Question from calculus limit :-
Find :-
Lim x tends to 1
f(x) = ?
Where
f(x) = x^2 - 1 , x≤ 1
= - x^2 - 1 , x>1
Answers
Answered by
43
★Assume x = (1 - h)
x → 1
★Hence :-
h → 0
= 1 - 1
= 0 .......... (1)
★Assume x = (1 + h)
x → 1
★Hence :-
h → 0
= - (1 + 0)² - 1
= -1 - 1
= - 2 .......... (2)
★We get from (1) and (2)
Answered by
20
Answer:
f(x) = x^2 - 1 ( x ≤ 1 )
For L. H. L.,
Lim ( x -> 1^ - ) f (x) = [ ( - 1)^2 - 1]
Lim ( x -> 1^ - ) f (x) = 1 - 1 = 0
For R. H. L. ,
Lim ( x -> 1^+) f (x) = - (1) ^2 - 1
Lim ( x -> 1^+) f (x) = - 1 - 1 = - 2
Hence,
L. H.L. ≠ R. H. L.
=> Function is discontinuous.
Similar questions