Math, asked by BrainlyIshu, 4 months ago

Question from Integral Calculas

Class 12th for Maths Genius and Moderators.

Solve it

Don't Spam
let \: f(x) =  \large{ \int} \frac{ \sqrt{x} }{ {(1 + x)}^{2} } dx(x \geqslant 0) \\
Then f(3) - f(1) is equals to ?​

Answers

Answered by SparklingBoy
77

ANSWER:-)

 \dfrac{ \pi}{12}  +  \dfrac{1}{2}   -  \dfrac{ \sqrt{3} }{4}

EXPLANATION:-)

Given that

f(x) =  \int \frac{ \sqrt{x} }{ {(1 + x)}^{2} }dx  \\  \\ put \: x =  {tan}^{2} y \\   \implies dx = 2tan \: y  \: {sec}^{2}  \: ydy \\  \\  \therefore f(x) =  \int \frac{2tan {}^{2} y. {sec}^{2} y}{ {sec}^{4} y} dy \\  \\  =  \int2 {sin}^{2} ydy \\  \\  =  \int(1 - cos2y)dy \\  \\   =  y-\frac{sin2y}{2}  + C

 = y -  \dfrac{tan \: y}{1 +  {tan}^{2} y}  + C \\  \\  =  {tan}^{ - 1}  \sqrt{x}  -  \frac{ \sqrt{x} }{1 + x}  + C

NOW:-)

f(3) - f(1) \\  \\  = ( {tan}^{ - 1}  \sqrt{3}  -  \frac{ \sqrt{3} }{1 + 3} +  C) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  ( {tan}^{ - 1} 1   -  \frac{1}{1 + 1}  + C) \\  \\  =  \frac{ \pi}{3}  -  \frac{ \sqrt{3} }{4}  -  \frac{ \pi}{4}  +  \frac{1}{2}  \\  \\  =  \frac{ \pi}{12}  +  \frac{1}{2}  -  \frac{ \sqrt{3} }{4}

Which is the required Answer of this Question

Answered by jeevankishorbabu9985
4

Answer:

  • Given that,

 \huge \bf \frac{f′(x)}{2}= \frac{{e }^{f(x)}}{x}</p><p></p><p></p><p>

 \huge{ \red{ \tt⟹f′(x).{e }^{ f(x)}=2x}}

 \large {\pink{⟹∫f′(x).{e  }^{f(x)}dx=∫2xdx}</p><p>}

 \blue {\huge{⟹{e }^{f(x)}={x }^{2} +c}}

 \huge{ \red{∵x=1,f(x)=f(1)=1}}

 \tt{⟹{e }^{ f(x)}={x }^{2} +e−1}

 \huge {\red{ \cal{⟹f(x)=log _ e({x }^{2} +e−1)}}}

When, f(x)=f(x) then the number of solutions are infinite.

Similar questions