Math, asked by krishapatel2801, 10 months ago

Question (g) please answer the question

Attachments:

Answers

Answered by Unni007
3

Given,

\bold{x=y=2b}

Given equation,

\bold{\frac{x}{a}+\frac{y}{b}=1}

Applying the value of y(= 2b) to the equation,

\implies\bold{\frac{x}{a}+\frac{2b}{b}=1}

\implies\bold{\frac{x}{a}+2=1}

\implies\bold{\frac{x}{a}=1-2}

\implies\bold{\frac{x}{a}=-1}

Given, x = 3

\implies\bold{\frac{3}{a}=-1}

\implies\bold{a=\frac{3}{-1}}

\implies\bold{a=-3}

\boxed{\bold{\therefore a=-3}}

Answered by Darkrai14
2

\large \mathbb{GIVEN:-}

\bf \bullet \quad \dfrac{x}{a} + \dfrac{y}{b} = 1

\bf \bullet \quad x = y = 2b=3

\large \mathcal{TO \ FIND:-}

The value of a

\large \mathbb{SOLUTION:-}

x = y = 2b = 3,

then

  • x = 3
  • y = 3
  • 2b = 3/2 or 1.5

Substituting the values,

\bf \implies \dfrac{3}{a} + \dfrac{3}{1.5} = 1

\bf \implies \dfrac{3}{a} + 2 = 1

\bf \implies \dfrac{3}{a} = 1- 2

\bf \implies \dfrac{3}{a} = -1

\bf \implies 3 = -1 \times a

\bf \implies 3 = -a

\bf \implies -3 = a

\boxed{\bf a = -3}

Similar questions