Math, asked by ItzRadhika, 8 months ago

Question =>>


Show that the point O(0,0) , A(3,root3 ) and B(3,-root3 ) are the vertices of an equilateral triangle. Find the area of this triangle.

Spammers stay away ✖​

Answers

Answered by Anonymous
18

SOLUTION:-

Given

  • O(0,0)
  • A( 3, √3)

• B(3, -√3)

To find

• Show that the points 0(0,0) , A(3,√3) and ⠀⠀⠀⠀B(3,-√3) are the vertices of equilateral tri.

⠀⠀• Find area of equilateral triangle

Explanation

By distance formula

\sqrt{(x1 - x2) {}^{2}  + (y1 - y2) {}^{2} }

For AO⤵️

 =  \sqrt{(0 - 3) {}^{2}  + (0 -  \sqrt{3}) {}^{2}  }

 =  \sqrt{( - 3) {}^{2}  + ( -  \sqrt{3}) {}^{2}  }

 =  \sqrt{9 + 3}

 =  \sqrt{12}

By distance formula

 \sqrt{(x1 - x2) {}^{2} + (y1 - y2) {}^{2}  }

For AB⤵️

 =  \sqrt{(3 - 3) {}^{2} + ( \sqrt{3}  -  \sqrt{3}) {}^{2}   }

 =  \sqrt{(0) {}^{2}  + ( - 2 \sqrt{3}) {}^{2}  }

 =  \sqrt{12}

By distance formula

 \sqrt{(x1 - x2) {}^{2}   + (y1 - y2) {}^{2} }

For OB⤵️

 \sqrt{(3 - 0) {}^{2}  + (0 - ( \sqrt{3}) {}^{})  {}^{2}  }

 =  \sqrt{(3) {}^{2}  + ( \sqrt{3}) {}^{2}  }

 =  \sqrt{9 + 3}

 =  \sqrt{1} 2

_____________________

 \sqrt{12}  =  \sqrt{12}  =  \sqrt{12}

All Sides are equal

So, It is an equilateral triangle and OAB are the vertices of equilateral triangle.

Area for equilateral triangle = 3/4×(side)²

Area = √3/4×(side)²

➡ √3/4×(√12)²

➡ √3/4 ×12

➡ √3 ×3

Area = 3√3 sq. unit

____________________________

Similar questions