Math, asked by Anonymous, 4 days ago

Question=>
The given figure is a parallelogram. Find x,y and z.​

Attachments:

Answers

Answered by KnightLyfe
38

As per the given information in the question, we have:

  • EHOP is a parallelogram.
  • ∠EHP = 40°

We have been asked to find the value of x, y and z.

We know:

  • If two parallel lines cut by a transversal, then the alternate interior angles are equal.

Using this property:

\longrightarrow\: \: \: \: \:\sf{\angle OPH=\angle EHP}

Here, value of ∠EHP is 40° and ∠OPH is y, so equating the values, we get:

\longrightarrow\: \: \: \: \:\bold{y={40}^{\circ}}

We know:

  • In triangle, sum of two opposite interior angles is equal to the exterior angle.

Using this property:

\longrightarrow\: \: \: \: \:\sf{\angle PHO+\angle HPO= Exterior\: angle}

Here, exterior angle is 70° and angle HPO is 40°, so equating the values, we get:

\longrightarrow\: \: \: \: \:\sf{\angle PHO+40=70}

Transposing 40 from LHS to RHS,

\longrightarrow\: \: \: \: \:\sf{\angle PHO=70-40}

Performing subtraction.

\longrightarrow\: \: \: \: \:\sf{\angle PHO=30}

Substituting value of ∠PHO as z.

\longrightarrow\: \: \: \: \:\bold{z={30}^{\circ}}

We know:

  • Sum of adjacent angles in a parallelogram equals to 180°.

Using this property:

\longrightarrow\: \: \: \: \:\sf{\angle FEG+\angle EGH=180}

Here, ∠EGH=∠EGF+∠FGH. So,

\longrightarrow\: \: \: \: \:\sf{\angle FEG+\angle EGF+\angle FGH=180}

Equating all the values, we get:

\longrightarrow\: \: \: \: \:\sf{x+40+30=180}

Performing addition.

\longrightarrow\: \: \: \: \:\sf{x+70=180}

Transposing 70 from LHS to RHS,

\longrightarrow\: \: \: \: \:\sf{x=180-70}

Performing subtraction.

\longrightarrow\: \: \: \: \:\bold{x={110}^{\circ}}

❝ Therefore, value of x is 110°, y is 40° and z is 30°. ❞

Similar questions