Math, asked by Anonymous, 6 months ago

QUESTION HERE X €W NEED DETAILS EXPLANATION ​

Attachments:

Answers

Answered by Anonymous
30

Question:-

Solve the inequation:-

(2x – 1)/3 < 5/2

Answer:-

  • The solution set is {0,1,2,3,4}.

Solution:-

 \large{ \tt :  \implies \:  \:  \:  \:  \frac{2x - 1}{3} \leqslant 2 \times \frac{1}{2}  } \\

 \large{ \tt :  \implies \:  \:  \:  \:  \frac{2x - 1}{3}  \leqslant  \frac{5}{2} } \\

 \large{ \tt :  \implies \:  \:  \:  \:  \frac{(2x - 1)}{ \cancel3}  \times  \cancel3 \leqslant  \frac{5}{2}  \times 3} \\

 \large{ \tt :  \implies \:  \:  \:  \: 2x    \cancel{ - 1}  \cancel{+ 1 }\leqslant  \frac{15}{2}  + 1} \\

 \large{ \tt :  \implies \:  \:  \:  \: 2x \leqslant  \frac{15 + 2}{2} } \\

 \large{ \tt :  \implies \:  \:  \:  \:  \frac{2x}{2}  \leqslant  \frac{17}{2 \times 2} } \\

 \large{ \tt :  \implies \:  \:  \:  \: x  \leqslant  \frac{17}{4} } \\

 \large{ \tt :  \implies \:  \:  \:  \: x \leqslant 4.25}

It is evident that 0,1,2,3,4 are the only whole numbers less or equal to 4.25

Thus,

When x is a whole number ,the solutions of the given inequality are 0,1,2,3,4

Hence,

The solution set is {0,1,2,3,4}.

Answered by spacelover123
29

Let's solve your equation step-by-step.

\dfrac{2x-1}{3}\leq 2\dfrac{1}{2}

Step 1: Simplify the equation.

\dfrac{2x-1}{3}\leq 2\dfrac{1}{2}

\dfrac{2}{3}x + \dfrac{-1}{3} \leq 2\dfrac{1}{2}

Step 2: Add \frac{1}{3} to both sides of the equation.

\dfrac{2}{3}x + \dfrac{-1}{3} +\dfrac{1}{3} \leq 2\dfrac{1}{2}+\dfrac{1}{3}

\dfrac{2}{3}x \leq \dfrac{5}{2} +\dfrac{1}{3}

\dfrac{2}{3}x  \leq  \dfrac{5\times 3 }{2\times 3 } +\dfrac{1\times 2}{3\times 2}

\dfrac{2}{3}x  \leq \dfrac{15}{6} +\dfrac{2}{6}

\dfrac{2}{3}x  \leq \dfrac{17}{6}

Step 3: Multiply both sides by \frac{3}{2}.

\dfrac{3}{2} \times \dfrac{2}{3}x  \leq \dfrac{3}{2} \times  \dfrac{17}{6}

x  \leq   \dfrac{17}{4}

x \leq 4.25

∴ The possible numbers for the value of 'x' would be any number below 4.25

∴ It could 0, 1, 2, 3, 4, etc.

_________________________________


prince5132: Awesome ^_^
spacelover123: Thanks <3
Similar questions