Math, asked by bhaskarparidhi, 6 hours ago

Question If 3 Cot A =4 then what is the value of​

Attachments:

Answers

Answered by ProximaNova
84

Answer:

\large\underline{\underline{\rm{\red{Given:-}}}}

\rm :\longmapsto 3cotA = 4

\large\underline{\underline{\rm{\red{To \ find :-}}}}

\rm :\longmapsto \dfrac{1-tan^2A}{1+tan^2A}

\large\underline{\underline{\rm{\red{Solution:-}}}}

\rm :\longmapsto 3cotA=4

\rm :\longmapsto cotA = \dfrac{4}{3}

Hence, we can find tanA as:

\rm :\longmapsto tanA = \dfrac{1}{cotA}

\rm :\longmapsto tanA = \dfrac{1}{\cfrac{4}{3}}

\rm :\longmapsto tanA = \dfrac{3}{4}

Now putting this in the given expression,

\rm :\longmapsto \dfrac{1-tan^A}{1+tan^2A} = \dfrac{1 - \left(\dfrac{3}{4}\right)^2}{1+\left(\dfrac{3}{4}\right)^2}

\rm :\longmapsto \dfrac{1-tan^A}{1+tan^2A} = \dfrac{1-\dfrac{9}{16}}{1+\dfrac{9}{16}}

\rm :\longmapsto \dfrac{1-tan^A}{1+tan^2A} = \dfrac{\dfrac{7}{16}}{\dfrac{25}{16}}

\star\boxed{\boxed{\rm :\longmapsto \dfrac{1-tan^A}{1+tan^2A} = \dfrac{7}{25}}}

\large\underline{\underline{\rm{\red{More:-}}}}

\sf \color{aqua}{Trigonometry\: Table}\\ \blue{\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \sf \red{\angle A} & \red{\sf{0}^{ \circ} }&\red{ \sf{30}^{ \circ} }& \red{\sf{45}^{ \circ} }& \red{\sf{60}^{ \circ}} &\red{ \sf{90}^{ \circ}} \\ \hline \\ \rm \red{sin A} & \green{0} & \green{\dfrac{1}{2}}& \green{\dfrac{1}{ \sqrt{2} }} &\green{ \dfrac{ \sqrt{3}}{2} }&\green{1} \\ \hline \\ \rm \red{cos \: A} & \green{1} &\green{ \dfrac{ \sqrt{3} }{2}}&\green{ \dfrac{1}{ \sqrt{2} }} & \green{\dfrac{1}{2}} &\green{0} \\ \hline \\\rm \red{tan A}& \green{0} &\green{ \dfrac{1}{ \sqrt{3} }}&\green{1} & \green{\sqrt{3}} & \rm \green{\infty} \\ \hline \\ \rm \red{cosec A }& \rm \green{\infty} & \green{2}& \green{\sqrt{2} }&\green{ \dfrac{2}{ \sqrt{3} }}&\green{1} \\  \hline\\ \rm \red{sec A} & \green{1 }&\green{ \dfrac{2}{ \sqrt{3} }}& \green{\sqrt{2}} & \green{2} & \rm \green{\infty} \\  \hline \\ \rm \red{cot A }& \rm \green{\infty} & \green{\sqrt{3}}& \green{1} & \green{\dfrac{1}{ \sqrt{3} }} & \green{0}\end{array}}}}

\color{#FF7968}{\rule{36pt}{7pt}}\color{#4FB3F6}{\rule{36pt}{7pt}}\color{#FBBE2E}{\rule{36pt}{7pt}}\color{#60D399}{\rule{36pt}{7pt}}\color{#6D83F3}{\rule{36pt}{7pt}}

Answered by Anonymous
21

\sf \dag \:  \red{Given :-}

  • 3Cot A = 4

\sf \dag \: \red{To  \: Find :-}

 \boxed{ \sf \leadsto  \orange{  \frac{1 -  \tan ^{2}A  }{1 +  {tan}^{2}A } }}

 \sf \dag  \:  \purple{Solution :-}

 \sf \leadsto \: 3Cot A = 4 \\  \sf \leadsto \:  cotA =  \frac{4}{3}  \:  \:  \:

We know that,

 \sf \leadsto \: tan \: A =  \frac{1}{cot \:A }

 \sf \therefore \: tan \: A =  \frac{1}{ \frac{4}{3} }  =  \frac{3}{4}

Now we will put the derived value of tan A in the given expression, we will get,

 \sf \leadsto \:  \frac{1 -  {tan}^{2}A }{1 +  {tan}^{2}A }  \\  \sf \leadsto \:  \frac{1 -  (\frac{3}{4}) ^{2}  }{1 + ( \frac{3}{4})^{2} }  \:  \:  \:  \:  \\  \sf \leadsto \:  \frac{1 -  \frac{9}{16} }{1 +  \frac{9}{16} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \sf \leadsto \:  \frac{ \frac{16 - 9}{16} }{ \frac{16 + 9}{16} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \leadsto \:  \frac{ \frac{7}{16} }{ \frac{25}{16} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf \leadsto \:  \frac{7}{ \cancel{16}}  \times  \frac{ \cancel{16}}{25}  \:  \:  \:  \:  \:  \:  \\  \sf \leadsto \:  \frac{7}{25}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \boxed{ \orange \bigstar \:  \pink{ \sf \frac{1 -  {tan}^{2} A}{1 +  {tan}^{2}A } =  \frac{7}{25}  }}

Similar questions