Math, asked by MisterIncredible, 3 months ago

Question :-
If (a + [1]/[a])² = 3 , then a³⁹ + a²¹ - a²⁷ - a⁹ + 1 = ? (a>0)

Attachments:

Answers

Answered by shadowsabers03
34

Given,

\longrightarrow\left(a+\dfrac{1}{a}\right)^2=3

Taking square root,

\longrightarrow a+\dfrac{1}{a}=\sqrt3

\longrightarrow\dfrac{a^2+1}{a}=\sqrt3

\longrightarrow a^2+1=a\sqrt3

\longrightarrow a^2-a\sqrt3+1=0

Finding a,

\longrightarrow a=\dfrac{\sqrt3\pm\sqrt{3-4}}{2}

\longrightarrow a=\dfrac{\sqrt3\pm i}{2}

\longrightarrow a=\dfrac{\sqrt3}{2}\pm\dfrac{1}{2}\,i

Consider,

\longrightarrow a=\dfrac{\sqrt3}{2}+\dfrac{1}{2}\,i

Since \cos\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt3}{2} and \sin\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2},

\longrightarrow a=\cos\left(\dfrac{\pi}{6}\right)+i\sin\left(\dfrac{\pi}{6}\right)

By Euler's notation,

\longrightarrow a=e^{\frac{i\pi}{6}}

Now,

\longrightarrow S=a^{39}+a^{21}-a^{27}-a^9+1

\longrightarrow S=e^{\frac{39i\pi}{6}}+e^{\frac{21i\pi}{6}}-e^{\frac{27i\pi}{6}}-e^{\frac{9i\pi}{6}}+1

\longrightarrow S=e^{\frac{13i\pi}{2}}+e^{\frac{7i\pi}{2}}-e^{\frac{9i\pi}{2}}-e^{\frac{3i\pi}{2}}+1

Since e^{\frac{i\pi}{2}}=i,

\longrightarrow S=i^{13}+i^7-i^9-i^3+1

\longrightarrow S=i-i-i+i+1

\longrightarrow\underline{\underline{S=1}}

Consider,

\longrightarrow a=\dfrac{\sqrt3}{2}-\dfrac{1}{2}\,i

Since \cos\left(-\dfrac{\pi}{6}\right)=\dfrac{\sqrt3}{2} and \sin\left(-\dfrac{\pi}{6}\right)=-\dfrac{1}{2},

\longrightarrow a=\cos\left(-\dfrac{\pi}{6}\right)+i\sin\left(-\dfrac{\pi}{6}\right)

By Euler's notation,

\longrightarrow a=e^{-\frac{i\pi}{6}}

Now,

\longrightarrow S=a^{39}+a^{21}-a^{27}-a^9+1

\longrightarrow S=e^{-\frac{39i\pi}{6}}+e^{-\frac{21i\pi}{6}}-e^{-\frac{27i\pi}{6}}-e^{-\frac{9i\pi}{6}}+1

\longrightarrow S=e^{-\frac{13i\pi}{2}}+e^{-\frac{7i\pi}{2}}-e^{-\frac{9i\pi}{2}}-e^{-\frac{3i\pi}{2}}+1

Since e^{-\frac{i\pi}{2}}=-i=i^3,

\longrightarrow S=i^{39}+i^{21}-i^{27}-i^9+1

\longrightarrow S=-i+i+i-i+1

\longrightarrow\underline{\underline{S=1}}

Hence (2) is the answer.


amansharma264: great
BrainlyPopularman: Awesome
Answered by bhagyashreehappy123
32

It's well known that

AM > or = GM

Here,

AM =Arithmetic Mean

GM=Geometric Mean

So

( a+1/a )/2 > or = (+ve or -ve)square root of (a×1/a)

=> (a+1/a) > or = (2) or (-2)

For the minimum value of (a+1/a), take a=1or (-1).

According to the question

a+1/a =-2

=> a =(-1)

So

Putting a =(-1) in

a⁴+a³+a²+a+1 we get

a⁴+a³+a²+a+1=1 as answer to this question.

I hope it helps

Similar questions
Math, 3 months ago