Math, asked by MasterYadhhuvanshi, 1 year ago

Question : If a+b+c= 180 , then show that :
tan(a)+tan(b)+tan(c)= tan(a)tan(b)tan(c)​

Answers

Answered by Stera
7

Here's the Solution:

Given ,

a + b + c = 180

a + b = 180 - c \\  \\  =  >  \tan(a + b)  =  \tan(180 - c)  \\  \\  =  >  \tan(a + b)  =  -  \tan(c)  \\  \\  =  >  \frac{ \tan(a) +  \tan(b)  }{1 -  \tan(a) \tan(b)  }  = - \tan(c)  \\  \\   = >   \tan(a)  +  \tan(b)  =  -  \tan(c)  +  \tan(a)\tan(b) \tan(c)   \\  \\  =  >  \tan(a)  +  \tan(b)  +  \tan(c)  =  \tan(a)  \tan(b)  \tan(c)  \\  \\ hence \:  shown

Answered by Anonymous
9

Heya Brainly User !

Your Solution :

Given ,

a + b + c = 180

=> a + b = 180 - c

=>tan(a + b ) = tan(180 - c)

=> [tan(a) +tan(b)]/[1-tan(a)tan(b)]= -tan (c)

=>tan(a)+tan(b) = -tan(c){1-tan(a)tan(b)}

=> tan(a)+tan(b) = -tan(c)+tan(a)tan(b)tan(c)

=>tan(a)+tan(b)+tan(c) = tan(a)tan(b)tan(c)

Proved

Similar questions