Math, asked by Anonymous, 2 months ago

Question :-

If Cos^-1 C + Cos^-1 D = 3π/5 . Then Find the value of Sin^-1 C + Sin^-1 D . ✓

When I do this my answer is 2π/5 But it seems wrong to me .✓

Want Quality Answers ✓

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {cos}^{ - 1}x +  {cos}^{ - 1}y = \dfrac{3\pi}{5}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\: {sin}^{ - 1}x +  {sin}^{ - 1}y

\large\underline{\sf{Solution-}}

We know that,

\rm :\longmapsto\: {sin}^{ - 1}x +  {cos}^{ - 1}x = \dfrac{\pi}{2}

Now,

Given that,

\rm :\longmapsto\: {cos}^{ - 1}x +  {cos}^{ - 1}y = \dfrac{3\pi}{5}

\rm :\longmapsto\:\dfrac{\pi}{2} -  {sin}^{ - 1}x + \dfrac{\pi}{2} -  {sin}^{ - 1}y = \dfrac{3\pi}{5}

\rm :\longmapsto\:\pi -  {sin}^{ - 1}x -  {sin}^{ - 1}y = \dfrac{3\pi}{5}

\rm :\longmapsto\:{sin}^{ - 1}x  + {sin}^{ - 1}y = \pi - \dfrac{3\pi}{5}

\rm :\longmapsto\:{sin}^{ - 1}x  + {sin}^{ - 1}y = \dfrac{5\pi - 3\pi}{5}

\bf :\longmapsto\:{sin}^{ - 1}x  + {sin}^{ - 1}y = \dfrac{2\pi}{5}

Additional Information :-

 \boxed{\rm :\longmapsto\: {sin}^{ - 1}x +  {cos}^{ - 1}x = \dfrac{\pi}{2}}

 \boxed{\rm :\longmapsto\: {sec}^{ - 1}x +  {cosec}^{ - 1}x = \dfrac{\pi}{2}}

 \boxed{\rm :\longmapsto\: {tan}^{ - 1}x +  {cot}^{ - 1}x = \dfrac{\pi}{2}}

 \boxed{\rm :\longmapsto\: {tan}^{ -1}x +  {tan}^{ - 1}y =  {tan}^{ - 1}\bigg(\dfrac{x + y}{1 - xy} \bigg)}

 \boxed{\rm :\longmapsto\: {tan}^{ -1}x  -   {tan}^{ - 1}y =  {tan}^{ - 1}\bigg(\dfrac{x  -  y}{1  +  xy} \bigg)}

 \boxed{\rm :\longmapsto\: {sin}^{ -1}x  -   {sin}^{ - 1}y =  {sin}^{ - 1}\bigg(x \sqrt{1 -  {y}^{2}}- y \sqrt{1 -  {x}^{2} } \bigg) }

 \boxed{\rm :\longmapsto\: {sin}^{ -1}x   +   {sin}^{ - 1}y =  {sin}^{ - 1}\bigg(x \sqrt{1 -  {y}^{2}} + y \sqrt{1 -  {x}^{2} } \bigg) }

 \boxed{\rm :\longmapsto\: {cos}^{ -1}x   +{cos}^{ - 1}y =  {cos}^{ - 1}\bigg(xy -  \sqrt{1 -  {y}^{2}}\sqrt{1 -  {x}^{2} } \bigg) }

 \boxed{\rm :\longmapsto\: {cos}^{ -1}x    - {cos}^{ - 1}y =  {cos}^{ - 1}\bigg(xy +  \sqrt{1 -  {y}^{2}}\sqrt{1 -  {x}^{2} } \bigg) }

Similar questions
Math, 2 months ago