Math, asked by 44PurpleOcean, 1 day ago

⬇️ Question

if m + n = 14 and mn = 25 . find m^4 + n^4 .​

Answers

Answered by seohyng
18

Answer:

=> (m + n)¹ = (m + n)² - 4mn

=> (m + n)¹ = 196 100 = 96

Step-by-step explanation:

this is your perfect answer have a great day

Answered by AиgєℓíᴄAυяσяα
105

Step-by-step explanation:

 \tt \: Solution: \\ \tt Given, m+ n = 14 \\  \tt \: Squaring  \: both  \: the  \: sides,  \: we \:  get, \\  \tt⇒ (m+n)² = 14² \\  \tt \: ⇒ m² + 2mn + n² = 196 \\  \tt \: ⇒m² + 2(25) + n² = 196(Given \:  that \:  mn  \: = 25) \\  \tt \: ⇒m² + 50 + n² = 146² m² + 2(625) + n = 149 \\  \tt \: ⇒m² +2m²n² + n² = 196 \\  \tt \: m² + n² = 196 - 50 ⇒m² + n² = 146 \\  \tt \: Squaring \:  both \:  the  \: sides,  \: we \:  get \\  \tt (m²+n²)² = 146² \\  \tt \: ⇒ m^4 +2m²n² + n^4 =146² \\  \tt \: ⇒ m^4 + 2(mn)² + n^4 = 146²  \\  \tt \: ⇒m^4 + 2(25)² + n^4 = 146² \\  \tt \: ⇒ m^4 + 2(625) + n^4 = 146²  \\  \tt \: ⇒m^4 + 1250+ n^4 = 21316  \\  \tt \: ⇒m^4 + n^4 = 21316-1250=20,066  \\  \tt \: Thus,  \: m + n² = 20,066 \\

Similar questions
Math, 21 hours ago