Math, asked by Itzheartcracer, 2 days ago

Question!!
If sinA + sin²A = 1 & a cos¹²A + b cos⁸A + c cos⁶A - 1 = 0. Then find the value of the given expression.
(i) \sf b+\dfrac{c}{a}+b

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

\sf :\longmapsto\:sinA +  {sin}^{2}A = 1

can be rewritten as

\sf :\longmapsto\:sinA = 1 -  {sin}^{2}A

We know,

\rm :\longmapsto\:\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }}

So,

\sf :\longmapsto\:sinA = {cos}^{2}A

Now, on squaring both sides, we get

\sf :\longmapsto\: {(sinA)}^{2}  =  {( {cos}^{2} A)}^{2}

\sf :\longmapsto\: {sin}^{2}A =  {cos}^{4}A

\sf :\longmapsto\:1 -  {cos}^{2}A =  {cos}^{4}A

\rm :\longmapsto\: {cos}^{4}A +  {cos}^{2}A = 1

On cubing both sides, we get

\rm :\longmapsto\: ({cos}^{4}A +  {cos}^{2}A)^{3} = 1

We know,

\boxed{ \tt{ \:  {(x + y)}^{3}  =  {x}^{3} +  {3x}^{2}y +  {3xy}^{2} +  {y}^{3} \: }}

or

\boxed{ \tt{ \:  {(x + y)}^{3}  =  {x}^{3} +  {y}^{3}  + 3xy(x + y) \: }}

So, using this identity, we get

\rm :\longmapsto\: {cos}^{12}A +  {cos}^{6}A + 3( {cos}^{4}A)( {cos}^{2}A)( {cos}^{4}A +  {cos}^{2}A) = 1

\rm :\longmapsto\: {cos}^{12}A +  {cos}^{6}A + 3( {cos}^{6}A)( 1) = 1

\rm :\longmapsto\: {cos}^{12}A +  {cos}^{6}A + 3{cos}^{6}A = 1

\rm :\longmapsto\: {cos}^{12}A +4{cos}^{6}A = 1

\rm :\longmapsto\: {cos}^{12}A +4{cos}^{6}A - 1 = 0

So, on comparing with

\rm :\longmapsto\: a{cos}^{12}A + b {cos}^{8}A+c{cos}^{6}A - 1 = 0

We get

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:b = 0

\rm :\longmapsto\:c = 4

Now, Consider

\rm :\longmapsto\:b+\dfrac{c}{a}+b

On substituting the values of a, b and c, we get

\rm \:  =  \:0 + \dfrac{4}{1}  + 0

\rm \:  =  \:4

Hence,

\rm \implies\:\boxed{ \tt{ \: b+\dfrac{c}{a}+b = 4 \: }}

Similar questions