Math, asked by coolbuddy123, 1 year ago

Question -:

If tanθ + cotθ = 2 ; Find the value of tan^11θ + cot^11θ...

I want the correct solution for this question...

Go on... Please fast guyzz...​

Answers

Answered by UltimateMasTerMind
46

Solution:-

Given:-

tanθ + cotθ = 2 

To Find:-

tan^11θ + cot^11θ= ?

Find:-

tanθ + cotθ = 2

=) tanθ + 1/tanθ = 2

=) (tan^2θ + 1)/tanθ = 2

=) tan^2θ + 1 = 2tanθ

=) tan^2θ - 2tanθ +1 = 0

We know that,

(a - b)^2 = a^2 + b^2 - 2ab

Here,

a = tanθ

b = 1

Hence, we got

( tanθ - 1)^2 = 0

=) tanθ = 1

we know that,

tan 45° = 1.

=) tanθ = tan 45°

Cancelling tan from both the sides. we get,

=) θ = 45°

Now,

Taking tan^11θ + cot^11θ

=) tan^(11) 45° + cot^(11) 45°

We know that,

tan 45° = 1

cot 45° = 1.

=) 1^(11) + 1^(11)

=) 1 + 1

=) 2.

Hence,

tan^(11) θ + cot^(11) θ = 2.


UltimateMasTerMind: Thanks! :)
Anonymous: (^_^)
LAKSHMINEW: Great answer to.pp.er ji!✅✌⭐
UltimateMasTerMind: Thanks! :)
LAKSHMINEW: Mention not!!✌✋
coolbuddy123: Amazing ...Thanks☺
UltimateMasTerMind: Ur Most Welcome! :)
shadowsabers03: Perfect!!!
UltimateMasTerMind: Thanks! :)
shadowsabers03: Welcome. :-))
Answered by Swarup1998
43

Solution :

Given, \displaystyle\mathrm{tan\theta+cot\theta=2}

\displaystyle\implies \mathrm{tan\theta+\frac{1}{tan\theta}=2}

\displaystyle\implies \mathrm{\frac{tan^{2}\theta+1}{tan\theta}=2}

\displaystyle\implies \mathrm{\frac{2\:tan\theta}{1+tan^{2}\theta}=1}

\displaystyle\implies \mathrm{\frac{\frac{2\:sin\theta}{cos\theta}}{1+\frac{sin^{2}\theta}{cos^{2}\theta}}=1}

\displaystyle\implies \mathrm{\frac{\frac{2\:sin\theta}{cos\theta}}{\frac{sin^{2}\theta+cos^{2}\theta}{cos^{2}\theta}}=1}

\displaystyle\implies \mathrm{2\:sin\theta\:cos\theta=1}

\displaystyle\implies \mathrm{sin2\theta=1=sin\frac{\pi}{2}}

\displaystyle\implies \mathrm{2\theta=\frac{\pi}{2}}

\displaystyle\implies \underline{\mathrm{\theta=\frac{\pi}{4}}}

Now, \displaystyle\mathrm{tan^{11}\theta+cot^{11}\theta}

\displaystyle\implies \mathrm{tan^{11}\theta+cot^{11}\theta=tan^{11}\frac{\pi}{4}+cot^{11}\frac{\pi}{4}}

\displaystyle\implies \mathrm{tan^{11}\theta+cot^{11}\theta=1^{11}+1^{11}}

\displaystyle\implies \boxed{\mathrm{tan^{11}\theta+cot^{11}\theta=2}}


Anonymous: Nicely answered.
LAKSHMINEW: Good answer!✅✅✌⚡☺
coolbuddy123: Fabulous...Thanks ☺
Swarup1998: Happy to help :-)
shadowsabers03: Perfect answer!!!
Similar questions