Math, asked by absencex, 10 months ago

Question:If
 \frac{{a}^{n + 1}  +b {}^{n + 1}  } { {a}^{n}  +  {b}^{n} }
is the A.M.between a and b. Then, find the value of n. ​

Answers

Answered by PanThErBoY
9

\huge{ \underline{ \purple{ \bold{ \underline{ \mathrm{AnS{\blue{weR }}}}}}}} =  >

we have,

  • A. M. between a and b=
  •  \frac{a + b}{2}

It is given that

  •  \frac{a {}^{n + 1} + b +  {}^{n + 1}  }{ {a}^{n}  +  {b}^{n} } is the A. M. between a and b.

  •  \frac{a {}^{n + 1}  + b {}^{n + 1} }{ {a}^{n }  +  {b}^{n} }  =  \frac{a + b}{2}

 =  > 2( {a}^{n + 1}  +  {b}^{n + 1} ) =  ({a}^{n}  +  {b}^{n} )(a + b)

 =  > 2 {a}^{n + 1}  + 2 {b}^{n + 1}  =  {a}^{n + 1}  + a {b}^{n}  +  {a}^{n} b +  {b}^{ + 1}

 =  >  {a}^{n + 1}  +  {b}^{n + 1}  = a {b}^{n}  +  {a}^{n} b

 =  >  {a}^{n + 1}  -  {a}^{n} b = a {b}^{n}  -  {b}^{n}  -  {b}^{n + 1}

 =  >  {a}^{n} (a - b) =  {b}^{n} (a - b)

 =  >  {a}^{n}  =  {b}^{n}

 =  >  \frac{a {}^{n} }{ {b}^{n}  } = 1 =  >   \binom{a}{b} {}^{n} =  \binom{a}{b}  {}^{0}  =  > n = 0

⭐⭐⭐MARK as barinlist ⭐⭐⭐

Similar questions