Math, asked by Theking0123, 4 months ago

question :-

If the diagonals of a triangle are 19cm , 26cm and 21m respectively then find the area of a triangle by the heron's formula ?

Answers

Answered by Eutuxia
20

Correct Question :

If the sides of a triangle are 19cm , 26cm and 21m respectively then find the area of a triangle by the heron's formula ?

Before, finding the answer. Let's find out on how we find answer.

  • First, we must find the semi-perimeter of triangle by the formula of :

\sf \dfrac{a + b + c}{2}

Here, a & b & c are the sides of triangle.

  • Next, we must use the Heron's formula :

\sf \sqrt{s(s-a) (s-b)(s-c)}

___________________

Given :

  • Side A = 19 cm
  • Side B = 26 cm
  • Side C = 21 cm

To find :

  • Area using Heron's formula

Solution :

\sf Semi-perimeter = \dfrac{a+b+c}{2}

\sf = \dfrac{19+26+21}{2}

\sf = \dfrac{66}{2}

\sf = 33 cm

Hence, the semi-perimeter is 33 cm.

\sf Area \: by \: Herons \: Formula =  \sqrt{s(s-a) (s-b)(s-c)}

\sf = \sf \sqrt{33(33-19) (33-26)(33-21)}

\sf = \sqrt{(33) \times (14) \times (7) \times (12) }

\sf = \sqrt{38808}

\sf = 42\sqrt{22}

Hence, Area of the Triangle is 44√22.

Answered by AnnieStar
56

\huge{\underbrace{\textsf{\textbf{\color{lightpink}{Question:-}}}}}

If the diagonals of a triangle are 19cm , 26cm and 21m respectively then find the area of a triangle by the heron's formula ?

\underline{\underline{\huge{\gray{\tt{\textbf Solution:- }}}}}

\green{\underline\bold{For\: the \:given\: triangle,}}

  • a = 19cm
  • b = 26cm
  • c = 21cm

Where a, b and c are the sides of the triangle.

\green{\underline\bold{To\: find:}}

  • Area of the triangle = ❓

{\large{\bold{\sf{\bf {\underline{Heron's\: Formula:}}}}}}

A =\displaystyle \sqrt{s(s-a)(s-b)(s-c)}

Where,

S =\frac{ a + b + c}{2}

S = \frac{ 19+ 26+ 21}{2}

S = 33

{\large{\bold{\sf{\bf {\underline{Applying \:heron's \: formula,\:we\:get:}}}}}}

⇒A = \displaystyle \sqrt{33(33-19)(33-26)(33-21)}

⇒A = \displaystyle \sqrt{33(14)(7)(12)}

⇒A = \displaystyle \sqrt{38808}

⇒A = 196.99

\pink{\underline\bold{∴ Area\: of\: the\: triangle\:= \:196.99.}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions