★ Question:-
If the product of the zeros of quadratic polynomial p(x) is - 81 and one of the zeros is 3 then p(x) = _________
(a) x² + 24x - 81
(b) x² - 24x - 81
(c) x² - 24x + 81
(d) x² + 24x + 81
↦Explanation needed!!
Answers
Answered by
13
Answer:
Putting the value of alpha in the product :
Now,
Ans. a) x^2 + 24x - 81
Hope it helps.
Answered by
1
Step-by-step explanation:
Answer:
\alpha \beta = - 81αβ=−81
let \: \alpha = 3letα=3
Putting the value of alpha in the product :
\alpha \beta = - 81αβ=−81
3 \beta = - 813β=−81
\beta = - 81 \div 3β=−81÷3
\beta = - 27β=−27
Now,
\alpha + \beta = 3 + ( - 27)α+β=3+(−27)
\: \: 3 - 273−27
\: \: - 24−24
p(x) = {x}^{2} - ( \alpha + \beta )x + \alpha \betap(x)=x
2
−(α+β)x+αβ
\: \: {x}^{2} - ( - 24)x + ( - 81)x
2
−(−24)x+(−81)
\: \: {x}^{2} + 24x - 81x
2
+24x−81
Ans. a) x^2 + 24x - 81
Hope it helps.
Similar questions