Science, asked by BRAINLYBOOSTER12, 2 months ago

Question: -

If x = m + 1, find the value of m from the equation \sf \dfrac{1}{2}(5x-6)- \dfrac{1}{3}(1+7x)= \dfrac{1}{2}

Answers

Answered by brinlyqueen
12

hope this helps you always

Attachments:
Answered by Anonymous
106

\qquad\large \underline{\pmb{\sf {To\: Find  :-}}}\\

  • Value of m

\qquad\large \underline{\pmb{\sf {Solution :-}}}\\

\pink{\:  \:  \:  \:   \:  \:  \:  \:  \: \:\:: \implies \sf \dfrac{1}{2}(5x-6)- \dfrac{1}{3}(1+7x)= \dfrac{1}{2}}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\:: \implies \sf\dfrac{5x-6}{2} - \dfrac{1 +7x}{3} =\dfrac{1}{2}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\:: \implies \sf \dfrac{3(5x-6)-2(1+7x)}{6}=\dfrac{1}{2}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\:: \implies \sf \dfrac{15x-18-2-14x}{6}=\dfrac{1}{2}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\:: \implies \sf \dfrac{x-20}{6}=\dfrac{1}{2}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\:: \implies \sf 2(x-20)=6\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\:: \implies \sf x - 20 = \dfrac{6}{2}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\:: \implies \sf x - 20 = 3\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\:: \implies \sf x = 3 + 20

 \sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies{\underline{\boxed{\frak{\pink{x=23}}}}}\:\bigstar\\\\

 \qquad According to the question :-

\:  \:  \:  \:   \:  \:  \:  \:  \red{\: \:\:: \implies \sf x = m + 1}\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\:: \implies \sf m = x - 1\\

\:  \:  \:  \:   \:  \:  \:  \:  \: \:\:: \implies \sf m = 23-1\\

 \sf  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies{\underline{\boxed{\frak{\red{m=22}}}}}\:\bigstar\\\\

\therefore\:\underline{\textsf{ Value of m is \textbf{22}}}.\\

Similar questions