Math, asked by shivalankayashvani, 1 month ago

Question:- If y(x) is a solution of [2+ sin x/1+y] dy/dx = - cos x and y(0) = 1, then find the value of y [π/2]​

Answers

Answered by shadowsabers03
3

Given that y(x) is a solution of the differential equation,

\longrightarrow\left(\dfrac{2+\sin x}{1+y}\right)\dfrac{dy}{dx}=-\cos x

\longrightarrow\dfrac{2+\sin x}{1+y}\cdot\dfrac{dy}{dx}=-\cos x

\longrightarrow\dfrac{dy}{1+y}=-\dfrac{\cos x\ dx}{2+\sin x}

Integrating,

\displaystyle\longrightarrow\int\dfrac{dy}{1+y}=-\int\dfrac{\cos x\ dx}{2+\sin x}

\displaystyle\longrightarrow\log|1+y|=-\log|2+\sin x|+\log|C|

Taking antilog,

\displaystyle\longrightarrow 1+y=\dfrac{C}{2+\sin x}\quad\quad\dots(1)

At (x,\ y)=(0,\ 1),

\displaystyle\longrightarrow 1+1=\dfrac{C}{2+\sin 0}

\displaystyle\longrightarrow 2=\dfrac{C}{2}

\longrightarrow C=4

Then (1) becomes,

\displaystyle\longrightarrow 1+y=\dfrac{4}{2+\sin x}

\displaystyle\longrightarrow y=\dfrac{4}{2+\sin x}-1

Then, at x=\dfrac{\pi}{2},

\displaystyle\longrightarrow y=\dfrac{4}{2+\sin\left(\dfrac{\pi}{2}\right)}-1

\displaystyle\longrightarrow y=\dfrac{4}{2+1}-1

\displaystyle\longrightarrow y=\dfrac{4}{3}-1

\displaystyle\longrightarrow\underline{\underline{y=\dfrac{1}{3}}}

Hence \bf{y\left(\dfrac{\pi}{2}\right)=\dfrac{1}{3}}.

Answered by riturai1234
1

Answer:

❤️ ❤️ Hope it's help you ❤️ ❤️

Attachments:
Similar questions