Question:-
if y=x^tan x +(sin x)^cos x, find dy/dx
Answers
Given:-
To Find:-
Solution:-
Apply ln on both sides ,
Now , differentiate y with respect to x ,
Answer:-
Hope It's Helps Uh :D
Answer:
Given:-
\bf y=x^{tanx}+(sinx)^{cosx}y=x
tanx
+(sinx)
cosx
To Find:-
\bf\dfrac{dy}{dx}
dx
dy
Solution:-
Apply ln on both sides ,
\begin{gathered}\begin{gathered}\implies \sf ln(y)=ln(x^{tanx})+ln(sinx^{cosx})\\\\\implies \sf ln(y)=tanx.lnx+cosx.ln(sinx)\;[\;Since\ ln(a^b)=b.lna]\end{gathered}\end{gathered}
⟹ln(y)=ln(x
tanx
)+ln(sinx
cosx
)
⟹ln(y)=tanx.lnx+cosx.ln(sinx)[Since ln(a
b
)=b.lna]
Now , differentiate y with respect to x ,
\begin{gathered}\begin{gathered}\implies \sf \dfrac{d}{dx}(ln(y))=\dfrac{d}{dx}(tanx.lnx+cosx.ln(sinx))\\\\\implies \sf \dfrac{1}{y}.\dfrac{dy}{dx}=\dfrac{d}{dx}(tanx.lnx)+\dfrac{d}{dx}(cosx.ln(sinx))\;[\;Since\;,\dfrac{d}{dx}(lnx)=\dfrac{1}{x\;}]\\\\\implies \sf \dfrac{1}{y}.\dfrac{dy}{dx}=lnx.\dfrac{d}{dx}(tanx)+tanx\dfrac{d}{dx}(lnx)+ln(sinx)\dfrac{d}{dx}(cosx)+cosx\dfrac{d}{dx}(ln(sinx))\end{gathered}\end{gathered}
⟹
dx
d
(ln(y))=
dx
d
(tanx.lnx+cosx.ln(sinx))
⟹
y
1
.
dx
dy
=
dx
d
(tanx.lnx)+
dx
d
(cosx.ln(sinx))[Since,
dx
d
(lnx)=
x
1
]
⟹
y
1
.
dx
dy
=lnx.
dx
d
(tanx)+tanx
dx
d
(lnx)+ln(sinx)
dx
d
(cosx)+cosx
dx
d
(ln(sinx))
\begin{gathered}\begin{gathered}\sf Since\;,\dfrac{d}{dx}(uv)=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\\\\\implies \sf \dfrac{1}{y}.\dfrac{dy}{dx}=lnx.sec^2x+\dfrac{tanx}{x}+ln(sinx)(-sinx)+cosx.\dfrac{1}{sinx}.cosx\\\\\implies \bf \dfrac{dy}{dx}=y(lnx.sec^2x+\dfrac{tanx}{x}-sinx.ln(sinx)+cotx.cosx)\\\\\implies \sf \dfrac{dy}{dx}=(x^{tanx}+(sinx)^{cosx})(lnx.sec^2x+\dfrac{tanx}{x}-sinx.ln(sinx)+cotx.cosx) \end{gathered}\end{gathered}
Since,
dx
d
(uv)=v
dx
du
+u
dx
dv
⟹
y
1
.
dx
dy
=lnx.sec
2
x+
x
tanx
+ln(sinx)(−sinx)+cosx.
sinx
1
.cosx
⟹
dx
dy
=y(lnx.sec
2
x+
x
tanx
−sinx.ln(sinx)+cotx.cosx)
⟹
dx
dy
=(x
tanx
+(sinx)
cosx
)(lnx.sec
2
x+
x
tanx
−sinx.ln(sinx)+cotx.cosx)
Answer:-
\bf \dfrac{dy}{dx}=(x^{tanx}+(sinx)^{cosx})(lnx.sec^2x+\dfrac{tanx}{x}-sinx.ln(sinx)+cotx.cosx)
dx
dy
=(x
tanx
+(sinx)
cosx
)(lnx.sec
2
x+
x
tanx
−sinx.ln(sinx)+cotx.cosx)
Hope It's Helps Uh :D