Math, asked by Anonymous, 1 month ago

Question in above attachment⤴️

Give answer correctly with explanation✅


No spams✖
No copy✖
No spam✖


Please answer✅



Thank you!​

Attachments:

Answers

Answered by Tomboyish44
99

We're asked to verify that (x + y) + z = x + (y + z) for two sets of values for 'x', 'y', and 'z'.

Part (I):

\sf \dashrightarrow \ x = \dfrac{1}{2}

\sf \dashrightarrow \ y = \dfrac{2}{3}

\sf \dashrightarrow \ z = -\dfrac{1}{5}

We're asked to prove that;

\sf \dashrightarrow (x + y) + z = x + (y + z)

Now we'll substitute the values given in the question.

\sf \dashrightarrow \Bigg[\dfrac{1}{2} + \dfrac{2}{3}\Bigg] - \dfrac{1}{5} = \dfrac{1}{2} + \Bigg[\dfrac{2}{3} - \dfrac{1}{5}\Bigg]

Taking LCM;

\sf \dashrightarrow \Bigg[\bigg(\dfrac{1}{2} \times \dfrac{3}{3}\bigg) + \bigg(\dfrac{2}{3} \times \dfrac{2}{2}\bigg)\Bigg] - \dfrac{1}{5} = \dfrac{1}{2} + \Bigg[\bigg(\dfrac{2}{3} \times \dfrac{5}{5} \bigg) - \bigg(\dfrac{1}{5} \times \dfrac{3}{3} \bigg)\Bigg]

\sf \dashrightarrow \Bigg[\dfrac{3}{6} + \dfrac{4}{6}\Bigg] - \dfrac{1}{5} = \dfrac{1}{2} + \Bigg[\dfrac{10}{15} - \dfrac{3}{15}\Bigg]

\sf \dashrightarrow \Bigg[\dfrac{3 + 4}{6}\Bigg] - \dfrac{1}{5} = \dfrac{1}{2} + \Bigg[\dfrac{10 - 3}{15}\Bigg]

\sf \dashrightarrow \dfrac{7}{6} - \dfrac{1}{5} = \dfrac{1}{2} + \dfrac{7}{15}

On taking LCM again we get;

\sf \dashrightarrow \Bigg(\dfrac{7}{6} \times \dfrac{5}{5}\Bigg) - \Bigg(\dfrac{1}{5} \times \dfrac{6}{6}\Bigg) = \Bigg(\dfrac{1}{2} \times \dfrac{15}{15} \Bigg) +\Bigg(\dfrac{7}{15} \times \dfrac{2}{2} \Bigg)

\sf \dashrightarrow \dfrac{35}{30} - \dfrac{6}{30} = \dfrac{15}{30} + \dfrac{14}{30}

\sf \dashrightarrow \dfrac{35 - 6}{30} = \dfrac{15 + 14}{30}

\sf \dashrightarrow \dfrac{29}{30} = \dfrac{29}{30}

LHS = RHS

Hence proved.

Part(II)

\sf \dashrightarrow \ x = \dfrac{-2}{5}

\sf \dashrightarrow \ y = \dfrac{4}{3}

\sf \dashrightarrow \ z = \dfrac{-7}{10}

We're asked to prove that;

\sf \dashrightarrow (x + y) + z = x + (y + z)

Now we'll substitute the values;

\sf \dashrightarrow \Bigg[\dfrac{-2}{5} + \dfrac{4}{3}\Bigg] + \dfrac{-7}{10} = \dfrac{-2}{5} + \Bigg[\dfrac{4}{3} + \dfrac{-7}{10}\Bigg]

On taking LCM we get;

\sf \dashrightarrow \Bigg[\bigg(\dfrac{-2}{5} \times \dfrac{3}{3}\bigg) + \bigg(\dfrac{4}{3} \times \dfrac{5}{5}\bigg)\Bigg] - \dfrac{7}{10} = \dfrac{-2}{5} + \Bigg[\bigg(\dfrac{4}{3} \times \dfrac{10}{10} \bigg) + \bigg(\dfrac{-7}{10} \times \dfrac{3}{3} \bigg)\Bigg]

\sf \dashrightarrow \Bigg[\dfrac{-6}{15} + \dfrac{20}{15}\Bigg] - \dfrac{7}{10} = \dfrac{-2}{5} + \Bigg[\dfrac{40}{30} + \bigg(\dfrac{-21}{30}\bigg)\Bigg]

\sf \dashrightarrow \Bigg[\dfrac{-6 + 20}{15}\Bigg] - \dfrac{7}{10} = \dfrac{-2}{5} + \Bigg[\dfrac{40 - 21}{30}\Bigg]

\sf \dashrightarrow \Bigg[\dfrac{14}{15}\Bigg] - \dfrac{7}{10} = \dfrac{-2}{5} + \Bigg[\dfrac{19}{30}\Bigg]

On taking LCM again we get;

\sf \dashrightarrow \bigg(\dfrac{14}{15} \times \dfrac{2}{2}\bigg) - \bigg(\dfrac{7}{10} \times \dfrac{3}{3} \bigg) =  \bigg(\dfrac{-2}{5} \times \dfrac{6}{6}\bigg) + \dfrac{19}{30}

\sf \dashrightarrow \dfrac{28}{30} - \dfrac{21}{30} = \dfrac{-12}{30} + \dfrac{19}{30}

\sf \dashrightarrow \dfrac{28 - 21}{30} = \dfrac{-12 + 19}{30}

\sf \dashrightarrow \dfrac{7}{30} = \dfrac{7}{30}

LHS = RHS

Hence proved.

Answered by Anonymous
47

1]

We have

x = ½

y = ⅔

z = -⅕

So,

LHS

\sf \bigg(\dfrac{1}{2} + \dfrac{2}{3} \bigg) - \dfrac{1}{5}

\sf \bigg(\dfrac{3 + 4}{6}\bigg) - \dfrac{1}{5}

\sf \dfrac{7}{6} - \dfrac{1}{5}

\sf \dfrac{35 - 6}{30}

\sf \dfrac{29}{30}

RHS

\sf \dfrac{1}{2} +  \bigg( \dfrac{2}{3} - \dfrac{1}{5}\bigg)

\sf \dfrac{1}{2} + \dfrac{10 - 3}{15}

\sf \dfrac{1}{2} + \dfrac{7}{15}

\sf \dfrac{15 + 14}{30}

\sf \dfrac{29}{30}

Hence, proved

2]

LHS

\sf \bigg( \dfrac{-2}{5} + \dfrac{4}{3}\bigg) - \dfrac{7}{10}

\sf \bigg(\dfrac{-6 + 20}{15}\bigg) \dfrac{7}{10}

\sf \dfrac{14}{15} - \dfrac{7}{10}

\sf \dfrac{28 - 21}{30}

\sf \dfrac{7}{30}

RHS

\sf \dfrac{-2}{5}+ \bigg(\dfrac{4}{3}+ \dfrac{-7}{10}\bigg)

\sf \dfrac{-2}{5}+ \bigg(\dfrac{4}{3}-\dfrac{7}{10}\bigg)

\sf \dfrac{-2}{5} + \bigg(\dfrac{40 - 21}{30}\bigg)

\sf \dfrac{-2}{5} + \dfrac{19}{30}

\sf \dfrac{-12+19}{30}

\sf \dfrac{7}{30}

Hence, proved

Similar questions