Question in attachement. If answer will bwe wright then brainliest.
Attachments:
Answers
Answered by
3
Given a + b + c = 5 and ab + bc + ca = 10.
We know that a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) --(1)
We know that (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
= > (5)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
= > 25 = a^2 + b^2+ c^2 + 2(10)
= > 25 = a^2 + b^2 + c^2 + 20
= > a^2 + b^2 + c^2 = 5 ------ (2)
Substitute (2) in (1), we get
= > a^3 + b^3 + c^3 - 3abc = (5)(5 - 10)
= 5(-5)
= -25.
Therefore a^3 + b^3 + c^3 - 3abc = -25.
Hope this helps!
We know that a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) --(1)
We know that (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
= > (5)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
= > 25 = a^2 + b^2+ c^2 + 2(10)
= > 25 = a^2 + b^2 + c^2 + 20
= > a^2 + b^2 + c^2 = 5 ------ (2)
Substitute (2) in (1), we get
= > a^3 + b^3 + c^3 - 3abc = (5)(5 - 10)
= 5(-5)
= -25.
Therefore a^3 + b^3 + c^3 - 3abc = -25.
Hope this helps!
siddhartharao77:
:-)
Answered by
5
Hi,
Please see the attached file!
Thanks
Please see the attached file!
Thanks
Attachments:
Similar questions