Math, asked by Anonymous, 4 months ago

question in attachment
don't spam please

Attachments:

itzkanika85: hlo evry1
itzkanika85: kya vaat h koi ni h
itzkanika85: koi h kya

Answers

Answered by hotcupid16
48

Step-by-step explanation:

To evaluate :-

 \sf \star \: \dfrac {tan^{2} \: 60\degree + 4 \: sin ^{2} \: 45 \degree + 3 \: sec ^{2} \: 30\degree + 5 \: cos ^{2} \: 90\degree}{cosec \: 30\degree + sec \: 60\degree - cot^{3} \: 30\degree}

Solution :-

We have,

 \sf \star \: \dfrac {tan^{2} \: 60\degree + 4 \: sin ^{2} \: 45 \degree + 3 \: sec ^{2} \: 30\degree + 5 \: cos ^{2} \: 90\degree}{cosec \: 30\degree + sec \: 60\degree - cot^{3} \: 30\degree}

tan 60° = √3

sin 45° = 1/√2

sec 30° = 2/√3

cos 90° = 0

cosec 30° = 2

sec 60° = 2

cot 30° = √3

Put all values :

 \sf  \longrightarrow  \dfrac{( \sqrt{3} ) ^{2}  + 4 \times   \bigg(\dfrac{1}{ \sqrt{2}} \bigg)^{2}  + 3 \times  { \bigg( \dfrac{2}{ \sqrt{3} }  \bigg)}^{2} + 5 \times (0)^{2} }{ 2 + 2 -  {( \sqrt{3}) }^{2} } \\

 \sf  \longrightarrow  \dfrac{3 + 4 \times  \dfrac{1}{2}  + 3 \times  \dfrac{4}{3} + 5 \times 0 }{4 - 3} \\

 \sf  \longrightarrow  \dfrac{3 + 2 + 4 + 0}{1}  \\

 \longrightarrow \boxed{\bold{9}} \\

Therefore,

 \bold{ \star \: \dfrac {tan^{2} \: 60\degree + 4 \: sin ^{2} \: 45 \degree + 3 \: sec ^{2} \: 30\degree + 5 \: cos ^{2} \: 90\degree}{cosec \: 30\degree + sec \: 60\degree - cot^{3} \: 30\degree} = 9}

Similar questions