Math, asked by yatin69, 2 months ago

Question in attachment plz solve it . its urgent

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \cos ^{ - 1} x -  \cos^{ - 1}  \bigg( \frac{y}{2}  \bigg) =  \alpha  \\

 \implies   \cos^{ - 1}  \bigg( \frac{xy}{2} +  \sqrt{1 -  {x}^{2} }. \sqrt{1 -  \frac{ {y}^{2} }{4} }    \bigg) =  \alpha  \\

 \implies    \frac{xy}{2} +  \sqrt{1 -  {x}^{2} }. \sqrt{1 -  \frac{ {y}^{2} }{4} }    =   \cos(\alpha)  \\

 \implies     \sqrt{1 -  {x}^{2} }. \sqrt{1 -  \frac{ {y}^{2} }{4} }    =   \cos(\alpha)  - \frac{xy}{2}  \\

 \implies    \bigg(  \sqrt{1 -  {x}^{2} }. \sqrt{1 -  \frac{ {y}^{2} }{4} }    \bigg) ^{2}  =  \bigg(  \cos(\alpha)  - \frac{xy}{2}  \bigg) ^{2} \\

 \implies   (1 -  {x}^{2})  \bigg(  1 -  \frac{ {y}^{2} }{4}    \bigg)   =   \cos ^{2} (\alpha)  +  \frac{x^{2} y^{2} }{4}  - xy \cos( \alpha )  \\

 \implies 1 -  {x}^{2}  -  \frac{ {y}^{2} }{4}  +  \frac{ {x}^{2}  {y}^{2} }{4}   =   \cos ^{2} (\alpha)  +  \frac{x^{2} y^{2} }{4}  - xy \cos( \alpha )  \\

 \implies 1 -  {x}^{2}  -  \frac{ {y}^{2} }{4}    =   \cos ^{2} (\alpha)   - xy \cos( \alpha )  \\

 \implies 1 -  \cos ^{2} (\alpha)     = {x}^{2}  +\frac{ {y}^{2} }{4} - xy \cos( \alpha )  \\

 \implies  \sin^{2} (\alpha)     = {x}^{2}  +\frac{ {y}^{2} }{4} - xy \cos( \alpha )  \\

 \implies 4 \sin^{2} (\alpha)     = 4{x}^{2}  +{y}^{2}  - 4xy \cos( \alpha )  \\

Similar questions