Math, asked by yatin69, 2 months ago

Question in attachment plz solve it . its urgent

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \cos^{ - 1}  \bigg(  \frac{ \cos(x) +  \cos(y)  }{1 +  \cos(x)  \cos(y) } \bigg) \\

 =  \tan^{ - 1}  \bigg \{\frac {  \sqrt{1 -( \frac{ \cos(x) +  \cos(y)  }{1 +  \cos(x)  \cos(y) }} )^{2} }{\frac{ \cos(x) +  \cos(y)  }{1 +  \cos(x)  \cos(y) }} \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  \sqrt{(1  +  \cos(x) \cos(y) ) ^{2}  -( \cos(x) +  \cos(y)  } )^{2} }{ \cos(x) +  \cos(y)  } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  \sqrt{1  +  \cos ^{2} (x) \cos ^{2} (y)  + 2 \cos(x)  \cos(y)   - \cos ^{2} (x)  -   \cos^{2} (y)  - 2 \cos(x)  \cos(y)  } }{ \cos(x) +  \cos(y)  } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  \sqrt{1  +  \cos ^{2} (x) \cos ^{2} (y)    - \cos ^{2} (x)  -   \cos^{2} (y)  } }{ \cos(x) +  \cos(y)  } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  \sqrt{1 - \cos ^{2} (x)+  \cos ^{2} (x) \cos ^{2} (y)      -   \cos^{2} (y)  } }{ \cos(x) +  \cos(y)  } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  \sqrt{(1 - \cos ^{2} (x) )- \cos ^{2} (y)(1 -   \cos ^{2} (x)  )     } }{ \cos(x) +  \cos(y)  } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  \sqrt{(1 - \cos ^{2} (x) )(1- \cos ^{2} (y))    } }{ \cos(x) +  \cos(y)  } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  \sqrt{\sin^{2} (x) \sin^{2} (y)   } }{ \cos(x) +  \cos(y)  } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  \sin (x) \sin(y)   }{ \cos(x) +  \cos(y)  } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  4\sin ( \frac{x}{2} ) \sin( \frac{y}{2} ) \cos( \frac{x}{2} )  \cos( \frac{y}{2} )    }{ \cos(x) +  \cos(y)  } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  2\tan( \frac{x}{2} ) \tan( \frac{y}{2} )   }{  \frac{\cos(x) +  \cos(y) }{2 \cos ^{2} ( \frac{x}{2} ) \cos^{2} ( \frac{y}{2} )  } } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  2\tan( \frac{x}{2} ) \tan( \frac{y}{2} )   }{  \frac{2\cos^{2} ( \frac{x}{2} ) - 1 + 2 \cos ^{2} ( \frac{y}{2} ) - 1 }{2 \cos ^{2} ( \frac{x}{2} ) \cos^{2} ( \frac{y}{2} )  } } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  2\tan( \frac{x}{2} ) \tan( \frac{y}{2} )   }{  \sec^{2} ( \frac{y}{2} ) +   \sec^{2} ( \frac{x}{2} ) -  \sec^{2} ( \frac{x}{2} )  \sec ^{2} ( \frac{y}{2} )   } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  2\tan( \frac{x}{2} ) \tan( \frac{y}{2} )   }{  1 + \tan^{2} ( \frac{y}{2} ) + 1 +   \tan^{2} ( \frac{x}{2} ) -  (1 + \tan^{2} ( \frac{x}{2} ) )(1 +  \tan ^{2} ( \frac{y}{2} ) )  } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  2\tan( \frac{x}{2} ) \tan( \frac{y}{2} )   }{  1 + \tan^{2} ( \frac{y}{2} ) + 1 +   \tan^{2} ( \frac{x}{2} ) -  1  - \tan^{2} ( \frac{x}{2} )  -   \tan ^{2} ( \frac{y}{2} )  -  \tan^{2} ( \frac{x}{2} )  \tan ^{2} ( \frac{y}{2} )  } \bigg \} \\

 =  \tan^{ - 1}  \bigg \{\frac {  2\tan( \frac{x}{2} ) \tan( \frac{y}{2} )   }{  1  -  \tan^{2} ( \frac{x}{2} )  \tan ^{2} ( \frac{y}{2} )  } \bigg \} \\

 =  2\tan^{ - 1}    \bigg\{\tan( \frac{x}{2} ) \tan( \frac{y}{2} )    \bigg \} \\

Similar questions