Question In Attachment⤴️
Step by step explaination needed
Answers
________________________________
Given —
- EF || CD
- ∠ ABC = 40°
- ∠ CEF = 165°
- ∠ BCE = 24°
________________________________
To prove — AB || CD
________________________________
Construction — Draw EO perpendicular to CD.
- Hence, ∠ COE = 90° ( —1
- And, ∠ OEF = 90° ( —2
________________________________
Also, ∠ CEO + ∠ OEF = ∠ CEF
( Putting values, we get )
- Or, ∠ CEO + 90° = 165° ( From — 2 , Also, ∠ CEO And ∠ OEF are adjacent angles )
- Or, ∠ CEO = 165° — 90°
- Or, ∠ CEO = 75°
________________________________
Now, in triangle, CEO,
∠ CEO + ∠ COE + ∠ OCE = 180° { Angle sum property of a triangle }
Or, 75° + 90° + ∠ OCE = 180° { ∠ CEO = 75° — Proved above }
Or, ∠ OCE = 180° – 75° + 90°
Or, ∠ OCE = 180° – 165°
Or, ∠ OCE = 15 °
Or, ∠ DCE = 15 °
________________________________
Now, ∠ BCE + ∠ DCE = ∠ BCD
Or, 25° + 15° = ∠ BCD
Or, ∠ BCD = 40°
________________________________
Here, ∠ BCD = ∠ ABC = 40°
Also, ∠ BCD and ∠ ABC are alternate interior angles.
( Theorem — If the pair of alternate interior angles are equal then the lines are parallel. )
Hence, AB || CD — Proved
________________________________
#CHeatedfromabove
#CHeatedfromabove
________________________________
Given —
EF || CD
∠ ABC = 40°
∠ CEF = 165°
∠ BCE = 24°
________________________________
To prove — AB || CD
________________________________
Construction — Draw EO perpendicular to CD.
Hence, ∠ COE = 90° ( —1
And, ∠ OEF = 90° ( —2
— Also, ∠ CEO + ∠ OEF = ∠ CEF
( Putting values, we get )
Or, ∠ CEO + 90° = 165° ( From — 2 , Also, ∠ CEO And ∠ OEF are adjacent angles )
Or, ∠ CEO = 165° — 90°
Or, ∠ CEO = 75°
________________________________
— Now, in triangle, CEO,
∠ CEO + ∠ COE + ∠ OCE = 180° { Angle sum property of a triangle }
Or, 75° + 90° + ∠ OCE = 180° { ∠ CEO = 75° — Proved above )
Or, ∠ OCE = 180° – 75° + 90°
Or, ∠ OCE = 180° – 165°
Or, ∠ OCE = 15 °
Or, ∠ DCE = 15 °
________________________________
Now, ∠ BCE + ∠ DCE = ∠BCD
Or, 25° + 15° = ∠BCD
Or, ∠BCD = 40°
________________________________
Here, ∠BCD = ∠ABC = 40°
Also, ∠BCD and ∠ABC are alternate interior angles.
( Theorem — If the pair of alternate interior angles are equal then the lines are parallel. )
Hence, AB || CD — Proved
________________________________
#CHeatedfromabove