Math, asked by Anonymous, 17 days ago

Question In Photo.



DailyChallengeQuest ​

Attachments:

Answers

Answered by Anonymous
31

Given-

  •  \rm{Sum  \: of  \: roots ,(\alpha +\beta) }= 5
  •  \rm{Sum \:  of  \: cubes \:  of \:  root ,({\alpha}^3 +{\beta}^3) = 35}

 \rm{where  \: \alpha \:  and  \: \beta \:  are  \: roots  \: of  \: quadratic \:  equation.}

To Find-

  •  \text{The quadratic equation}

Solution-

 \rm{(\alpha +\beta)^3 = {\alpha}^3+{\beta}^3 + 3 \alpha \beta(\alpha +\beta)}

Putting given values-

 \rm(5)^3 = 35 + 3 \alpha \beta(5)

 \rm{125-35 = 15 \alpha \beta}

 \rm{90 = 15 \alpha \beta}

\frac{90}{15} = \alpha \beta

\alpha \beta = 6

 \boxed{ \sf{Quadratic  \: Equation = x^2 + (sum \:  of \:  roots)x + product  \: of \:  roots}}

\implies\rm x^2 + (\alpha +\beta)x + \alpha \beta

\implies\large\red\star\boxed{\sf {x^2 + 5x + 6 }}

Similar questions