Math, asked by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ, 4 months ago

Question in the attachment​

Attachments:

Answers

Answered by tennetiraj86
38

Step-by-step explanation:

Solutions:-

1) Given that

x = a Cos^3 θ----------------(1)

On squaring both sides then

x^2 = a^2 (Cos^3)^2 θ

On raising power to (1/3) both sides then

x^2/3 = a^2/3 Cos^2 θ-----(2)

y = a sin^3 θ------------------(3)

On squaring both sides then

y^2 = a^2 (Sin^3)^2 θ

On raising power to (1/3) both sides then

y^2/3 = a^2/3 Sin^2 θ-------(4)

On adding (2)&(4)

x^2/3 +y^2/3= (a^2/3)Cos^2 θ +( a^2/3) Sin^2 θ

x^2/3+y^2/3= a^2/3[Cos^2 θ +Sin^2 θ]

We know that sin^2A+cos^2A = 1

x^2/3+y^2/3 = a^2/3 (1)

x^2/3 + y^2/3 = a^2/3

_________________________________

2)Given that

x = Cosec θ - Sin θ-----------(1)

=>x = (1/Sin θ) - Sin θ

=>x = (1-Sin^2θ)/Sinθ

=>x = Cos^2θ/Sinθ

=>x = (Cosθ/Sinθ) Cosθ

=>x = Cot θ Cos θ

On squaring both sides then

=>x^2 = Cot^2 θ Cos^2 θ-----(2)

y=Sec θ - Cos θ

=>y = (1/Cosθ)-Cosθ

=>y=(1-Cos^2 θ)/Cosθ

=>y=Sin^2 θ/Cosθ

=>y = (Sinθ/Cosθ) Sinθ

=>y = Tan θ Sin θ

On squaring both sides then

=>y^2 = Tan^2 θ Sin^2 θ --------(3)

x^2y= (Cot^2 θ Cos^2 θ)×(Tan θ Sin θ)

=>x^2y = Cot^2 θ×tanθ×Cos^2θ×Sinθ

=>x^2y = Cot θ× Cos^2θ×Sinθ

=>x^2y = (Cos θ/Sinθ)×Cos^2θ×Sinθ

=>x^2y = Cos^2 θ× Cos θ

=>x^2y = Cos^3 θ

=>(x^2y)^2/3= (Cos^3 θ)^2/3

=>(x^2y)^2/3= Cos^2 θ ---------------(4)

xy^2 = (Cot θ Cos θ)×(Tan^2 θ Sin^2 θ)

=>xy^2 = Cot Tan^2 θ Sin^2 θ× Cos θ

=>xy^2 = Tan θSin^2 θ× Cos θ

=>xy^2 = (Sin θ/Cos θ)×Sin^2 θ× Cos θ

=>xy^2= Sinθ× Sin^2 θ

=>xy^2 = Sin^3 θ

=>(xy^2)^2/3 = (Sin^3 θ)^2/3

=>(xy^2)^2/3 = Sin^2 θ--------------(5)

On adding (4)&(5)

(xy^2)^2/3 + (x^2y)^2/3 = Sin^2 θ+Cos^2θ

(xy^2)^2/3 + (x^2y)^2/3 = 1

__________________________________

3) Given that

x = Cot θ + Tan θ

=>x = (Cosθ/Sinθ)+(Sinθ/Cosθ)

=>x= (Cos^2θ+Sin^2θ)/SinθCosθ

=>x= 1/SinθCosθ

=>x = Cosec θ Sec θ

On squaring both sides then

x^2 = Cosec^2 θ Sec^2 θ -----------(1)

y = Sec θ - Cos θ

=>y = (1/Cos θ)-Cosθ

=>y = (1-Cos^2 θ)/Cos θ

=>y = Sin^2 θ/Cos θ

=>y = Tan θ Sin θ

On squaring both sides then

=>y^2 = Tan^2θ Sin^2θ ---------------(2)

x^2y = (Cosec^2 θ Sec^2 θ)(Tan θ Sin θ)

=>x^2y =Cosec^2θ×Sec^2θ×Sin^2θ/Cos θ

=>x^2y = Sec^2 θ /Cos θ

=>x^2y = Sec^2 θ ×Sec θ

=>x^2y = Sec^3 θ

=>(x^2y)^2/3 = (Sec^3 θ )^2/3

=>(x^2y)^2/3 = Sec^2 θ -------------(3)

xy^2 = (Cosec θ Secθ )×(Tan^2 θ Sin^2 θ )

=>xy^2 = Tan^3 θ

=>(xy^2)^2/3 = (Tan^3 θ )^2/3

=>(xy^2)^2/3 = Tan^2 θ -------------(4)

On subtracting (4) from (3)

=>(x^2y)^2/3 - (xy^2)^2/3 = Sec^2 θ - Tan^2 θ

(x^2y)^2/3 - (xy^2)^2/3 = 1

___________________________________

4) Given that

a= x Sec θ+ y Tan θ

On squaring both sides then

=>a^2 = ( x Sec θ+ y Tan θ)^2

=>a^2 = x^2Sec^2 θ+ y^2 Tan^2 θ+2xy Sec θTan θ

and

b= x Tan θ + y Sec θ

On squaring both sides then

=>b^2 = (x Tan θ+ y Sec θ)^2

=>b^2 = x^2 Tan^2 θ+ y^2 Sec^2θ+2xySecθTanθ

Now

a^2 - b^2

=(x^2Sec^2 θ+ y^2 Tan^2 θ+2xy Sec θTan θ) -

(x^2 Tan^2 θ+ y^2 Sec^2θ+2xySecθTanθ)

=>x^2Sec^2 θ+ y^2 Tan^2 θ- x^2 Tan^2 θ- y^2 Sec^2θ

=>x^2(Sec^2 θ-Tan^2θ)+y^2(Tan^2 θ-Sec^2θ)

=>x^2 (Sec^2 θ-Tan^2θ)-y^2(Sec^2θ-Tan^2 θ)

=>x^2(1)-y^2(1)

=>x^2-y^2

a^2-b^2 = x^2-y^2

_________________________________

Answers:-

Option (b)

I-S

II-P

III-Q

IV-R

Used formulae:-

  • Sin^2 A + Cos^2 A = 1
  • Sec^2 A- Tan^2 A = 1
  • Cosec^2 A- Cot^2 A= 1
  • Tan A = Sin A/Cos A
  • Cot A = Cos A/ Sin A
  • SecA = 1/CosA
  • Cosec A= 1/Sin A
  • Tan A = 1/CotA
  • Cot A = 1/Tan A
  • Tan A× Cot A = 1
  • SinA × CosecA = 1
  • SecA×CosA =1
Answered by vmonika0
0

Step-by-step explanation:

Hope it's helpful to you Please mark me brain list answer

Attachments:
Similar questions