Math, asked by lionofbrailu, 5 months ago

question in the attachment.solve it​

Attachments:

Answers

Answered by BrainlyEmpire
18

To Prove :-

\sf \sqrt{\dfrac{1-sinA}{1+sinA}} = secA-tanA

Solution :-

\sf L.H.S = \sqrt{\dfrac{1-sinA}{1+sinA}}

Multiply numerator and denominator by \sf 1 -sinA,

      = \sf \sqrt{\dfrac{(1-sinA)(1-sinA)}{(1+sinA)(1-sinA)}} \\\\= \sqrt{\dfrac{(1-sinA)^2}{1-sin^2A}}

\bullet \bf \ 1-sin^2A = cos^2A

     = \sf \sqrt{\dfrac{(1-sinA)^2}{cos^2A}} \\\\= \sqrt{\left( \dfrac{1}{cosA} - \dfrac{sinA}{cosA} \right)^2}

\bullet \bf \ secA= \dfrac{1}{cosA} \\\\\bullet \ tanA = \dfrac{sinA}{cosA}

        = \sf \sqrt{(secA-tanA)^2}\\\\= secA- tanA\\\\= R.H.S

Hence proved!

Answered by Anonymous
18

\huge{\boxed{\tt{Answer:}}}

refer the attachment :)

Attachments:
Similar questions