Math, asked by ssoumya512, 10 months ago

question
In the mean value theorem f(b) - f(a) =
(b-a)f'(c)if a=4 b=9 f(x)=√x then the value of cis​

Answers

Answered by MaheswariS
8

\textbf{Given:}

a=4,\;b=9\;\text{and}\;f(x)=\sqrt{x}

\textbf{To find:}

\text{The value of c using mean value theorem}

f(x)=\sqrt{x}

f'(x)=\dfrac{1}{2\sqrt{x}}

f(a)=f(4)=\sqrt{4}=2

f(b)=f(9)=\sqrt{9}=3

\textbf{By mean value theorem,}

f'(c)=\dfrac{f(b)-f(a)}{b-a}

\implies\dfrac{1}{2\sqrt{c}}=\dfrac{3-2}{9-4}

\implies\dfrac{1}{2\sqrt{c}}=\dfrac{1}{5}

\text{Taking reciprocals, we get}

2\sqrt{c}=5

\sqrt{c}=\dfrac{5}{2}

\,c=\dfrac{25}{4}

\implies\,c=6.25\,{\in}\,(4,9)

\therefore\textbf{The suitable value of c is 6.25}

Find more:

F(x)=x³-6x²+11x-6 x ∈ [1,3],Verify Rolle's theorem

https://brainly.in/question/11772094

Similar questions