Math, asked by kanavbj3, 3 months ago

Question is given below​

Attachments:

Answers

Answered by Anonymous
1

Answer:

Refer the attachement for better understanding

⬆️⬆️⬆️⬆️⬆️⬆️

Be Brainly!

Attachments:

amansharma264: Good
Answered by amansharma264
3

EXPLANATION.

Linear programming.

⇒ (max)z = 10500x + 9000y.

⇒ x + y ≤ 50.

⇒ 20x + 10y ≤ 800.

⇒ x ≥ 0, y ≥ 0.

As we know that,

We can write equation as,

⇒ x + y = 50. - - - - - (1).

⇒ 20x + 10y = 800. - - - - - (2).

From equation (1), we get.

⇒ x + y = 50. - - - - - (1).

Put the value of x = 0 in equation, we get.

⇒ (0) + y = 50.

⇒ y = 50.

Their Co-ordinates = (0,50).

Put the value of y = 0 in equation, we get.

⇒ x + (0) = 50.

⇒ x = 50.

Their Co-ordinates = (50,0).

From equation (2), we get.

⇒ 20x + 10y = 800. - - - - - (2).

Put the value of x = 0 in equation, we get.

⇒ 20(0) + 10y = 800.

⇒ 10y = 800.

⇒ y = 80.

Their Co-ordinates = (0,80).

Put the value of y = 0 in equation, we get.

⇒ 20x + 10(0) = 800.

⇒ 20x = 800.

⇒ x = 40.

Their Co-ordinates = (40,0).

Both curves intersects at a point = (30,20).

Put the all points in the equation and check the maximum values, we get.

⇒ (max)z = 10500x + 9000y.

(1) = Co-ordinates = (0,50).

⇒ (max)z = 10500 x 0 + 9000 x 50.

⇒ (max)z = 450000.

(2) = Co-ordinates = (50,0).

⇒ (max)z = 10500 x 50 + 9000 x 0.

⇒ (max)z = 525000.

(3) = Co-ordinates = (0,80).

⇒ (max)z = 10500 x 0 + 9000 x 80.

⇒ (max)z = 720000.

(4) = Co-ordinates = (40,0).

⇒ (max)z = 10500 x 40 + 9000 x 0.

⇒ (max)z = 420000.

(5) = Co-ordinates = (30,20).

⇒ (max)z = 10500 x 30 + 9000 x 20.

⇒ (max)z = 315000 + 180000.

⇒ (max)z = 495000.

The equation : (max)z = 10500x + 9000y at (30,20) = 495000.

Attachments:
Similar questions