Math, asked by rochanaratakonda, 4 days ago

Question is in attachment

Attachments:

Answers

Answered by ashin6akv1cok
0

Answer:

Hope it is helpfull

Step-by-step explanation:

Hope it is helpfull

Answered by amansharma264
5

EXPLANATION.

\sf \implies y = x\sqrt{a^{2} + x^{2} } + a^{2} log \bigg(x + \sqrt{a^{2}+ x^{2}  } \bigg)

As we know that,

Formula of :

\sf \implies \dfrac{d}{dx} [f(x).g(x)] = f(x). \dfrac{d}{dx} [g(x)]  + g(x). \dfrac{d}{dx} [f(x)].

Using this formula in the equation, we get.

\sf \implies \dfrac{dy}{dx} = \bigg[ (x) .\dfrac{d}{dx}  \sqrt{a^{2}+ x^{2}  } \ + \sqrt{a^{2}+ x^{2}  } . \dfrac{d}{dx} (x) \bigg] + \bigg[ \dfrac{a^{2} }{x + \sqrt{a^{2} + x^{2} } } . \dfrac{d}{dx} ( x + \sqrt{a^{2}+ x^{2} ) } \bigg]

\sf \implies \dfrac{dy}{dx} = \bigg[ x . \dfrac{2x}{2\sqrt{a^{2}+ x^{2}  } } +\sqrt{a^{2} + x^{2} }   } \bigg]  + \bigg[ \dfrac{a^{2} }{x + \sqrt{a^{2} + x^{2} } } \bigg] \bigg[ 1 + \dfrac{2x}{2\sqrt{a^{2}+ x^{2}  } } \bigg]

\sf \implies \dfrac{dy}{dx}  = \bigg[ \dfrac{x^{2} }{\sqrt{a^{2} + x^{2} } } + \sqrt{a^{2}+ x^{2}  } \bigg] + \bigg[ \dfrac{a^{2} }{x + \sqrt{a^{2}+ x^{2}  } } \bigg] \bigg[ \dfrac{\sqrt{a^{2} + x^{2} } + x}{\sqrt{a^{2} + x^{2} } } \bigg]

\sf \implies \dfrac{dy}{dx}  = \bigg[ \dfrac{x^{2} }{\sqrt{a^{2} + x^{2} } } + \sqrt{a^{2} + x^{2} } \ + \dfrac{a^{2} }{\sqrt{a^{2}+ x^{2}  } } \bigg]

\sf \implies \dfrac{dy}{dx} = \bigg[ \dfrac{a^{2} + x^{2} }{\sqrt{a^{2}+ x^{2}  } } + \sqrt{a^{2} + x^{2} } \bigg]

\sf \implies \dfrac{dy}{dx}  = \sqrt{a^{2}+ x^{2}  } +  \sqrt{a^{2}+ x^{2}  }

\sf \implies \dfrac{dy}{dx}   = 2\sqrt{a^{2} + x^{2} }

Hence Proved.

Similar questions