Math, asked by Anonymous, 5 hours ago

Question is in attachment​

Attachments:

Answers

Answered by XxitzZBrainlyStarxX
20

Question:-

If

 \sf  u + iv =  \frac{2 + i}{z + 3} and \: z = x + iy \: find \: u,v.

Given:-

\sf  u + iv =  \frac{2 + i}{z + 3} and \: z = x + iy \:

To Find:-

  • Value of u,v.

Solution:-

\sf u + iv =  \frac{2 + i}{x + iy + 3} =  \frac{2 + i}{(x + 3) + iy}

\sf u + iv =  \frac{2 + i}{(x + 3) + iy}  \times  \frac{(x + 3) - iy}{(x + 3) - iy}

 \sf u + iv =  \frac{(2 + 1) \times[(x + 3) - iy] }{(x + 3) {}^{2}  + y {}^{2} }

\sf{{Z_{1}}}. \sf{{Z_{2}}} \sf = (ac - bd,ad + bc)

a = 2, b = 1, c = x + 3, d = y.

\sf u + iv =  \frac{(2x + 6 + y - 2y  + x + 3)}{(x + 3) {}^{2} + y {}^{2}  }

 \sf u + iv =  \frac{(2x + y + 6) + i(x - 2y + 3)}{(x + 3) {^{2} + y {}^{2}  }}

 \sf u =  \frac{2x + y + 6}{(x + 3) {}^{2}  + y {}^{2} } ;v =  \frac{x - 2y + 3}{(x + 3) {}^{2} + y {}^{2}  }

Answer:-

\sf \red{ u =  \frac{2x + y + 6}{(x + 3) {}^{2}  + y {}^{2} }  \: ; \: v =  \frac{x - 2y + 3}{(x + 3) {}^{2} + y {}^{2}  } }

Hope you have satisfied.

Answered by SANDHIVA1974
4

Answer:

ᴀɴꜱᴡᴇʀ ɪꜱ ᴛʜᴇʀᴇ ɪɴ ᴀᴛᴄᴄʜᴍᴇɴᴛ...

☺️☺️☺️

Attachments:
Similar questions