Math, asked by saryka, 3 months ago

⇒ Question is in attachment
⇒ Avoid spamming
⇒ No useless answers​

Attachments:

Answers

Answered by Anonymous
69

S O L U T I O N :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf :\implies \: (1) =  \:  \int \:  \dfrac{1}{ {x}^{4}  - 1} dx

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

As we know that,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Formula of (a² - b²) = (a + b) (a - b)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Using this formula, we get,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf :\implies \:  \int \dfrac{1}{( {x}^{2}   +  1)( {x}^{2}  - 1)} dx

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:  \dfrac{1}{2}  \int \:  \dfrac{( {x}^{2}  + 1) - ( {x}^{2} - 1) }{( {x}^{2}  - 1)( {x}^{2} + 1) } dx

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:  \dfrac{1}{2}  \int \:   \bigg(\dfrac{1}{( {x}^{2}  - 1)} \:  \:  -   \:  \:  \dfrac{1}{( {x}^{2}  + 1)}  \bigg)dx

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:  \dfrac{1}{2}  \int \:  \dfrac{1}{( {x}^{2}  - 1)} dx \:  \:  -  \:  \:  \dfrac{1}{2} \int \:  \dfrac{1}{( {x}^{2}   + 1)} dx

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

By applying the formula,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:  \int \:  \dfrac{1}{ {x}^{2}  -  {a}^{2} } dx =  \dfrac{1}{2a}  log \bigg( \dfrac{x - a}{x + a} \bigg ) + c

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:  \dfrac{1}{ {x}^{2}  + 1}  =  \tan {}^{ - 1} (x)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:  \int \:  \dfrac{1}{4}  log  \bigg |\dfrac{x - 1}{x + 1} \bigg | \:  -  \dfrac{1}{2} \:  \tan {}^{ - 1} (x)  \:  + c

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:(2) =   \int \:  \dfrac{1}{ ({x}^{2}  -  {a}^{2}) } dx

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

As we know that,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Formula of (a² - b²) = (a + b) (a - b)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Apply this formula, we get,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:  \int \:  \dfrac{1}{(x - a)(x + a)}dx

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:  \dfrac{1}{2a}  \int \:  \dfrac{(x + a) - (x - a)}{(x + a)(x - a)} dx

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:  \dfrac{1}{2a}  \int \dfrac{(x + a)}{(x + a)(x - a)} dx \:  \:  -  \:  \:  \dfrac{1}{2a}  \int \:  \dfrac{(x - a)}{(x + a)(x - a) } dx

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:  \int \:  \dfrac{1}{2a}  \bigg( \dfrac{dx}{(x - a)}   \:  \: -  \:  \:  \dfrac{dx}{(x + a)} \bigg)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:   \dfrac{1}{2a}  \bigg( log(x - a) -  log(x + a)  \bigg) + c

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf :\implies \:   \dfrac{1}{2a}  log \bigg |  \dfrac{x - a}{x + a}  \bigg | + c

Answered by mathdude500
87

Given Question

 \bf \: Evaluate :  \: \displaystyle \int \sf \: \dfrac{dx}{ {x}^{4} - 1 }

Answer

Identities Used :-

 \boxed{ \red{\displaystyle \int \sf \: \dfrac{dx}{ {x}^{2} +  {a}^{2}} = \dfrac{1}{a} {tan}^{ - 1}\dfrac{x}{a} + c}}

 \boxed{ \red{\displaystyle \int \sf \: \dfrac{dx}{ {x}^{2}  -   {a}^{2}} = \dfrac{1}{2a}log\dfrac{x - a}{x + a} + c}}

 \boxed{ \blue{ \sf \:  {x}^{2}  -  {y}^{2} = (x + y)(x - y)}}

Step by step explanation :-

\rm :\longmapsto\:\displaystyle \int \sf \: \dfrac{dx}{ {x}^{4} - 1}

 \sf \:  \:  =  \: \displaystyle \int \sf \: \dfrac{dx}{ {x}^{4} - 1}

 \sf \:  \:  =  \: \displaystyle \int \sf \: \dfrac{dx}{ ({x}^{2})^{2}  - 1}

 \sf \:  \:  =  \: \displaystyle \int \sf \: \dfrac{dx}{ ({x}^{2} - 1)( {x}^{2}  + 1)}

On multiply and divide by 2, we get

 \sf \:  \:  =  \: \dfrac{1}{2} \displaystyle \int \sf \: \dfrac{2}{ ({x}^{2} - 1)( {x}^{2}  + 1)} dx

 \sf \:  \:  =  \: \dfrac{1}{2} \displaystyle \int \sf \: \dfrac{1 + 1}{ ({x}^{2} - 1)( {x}^{2}  + 1)} dx

 \sf \:  \:  =  \: \dfrac{1}{2} \displaystyle \int \sf \: \dfrac{1 + 1 +  {x}^{2}  -  {x}^{2} }{ ({x}^{2} - 1)( {x}^{2}  + 1)} dx

 \sf \:  \:  =  \: \dfrac{1}{2} \displaystyle \int \sf \: \dfrac{({x}^{2} + 1)-({x}^{2} - 1) }{ ({x}^{2} - 1)( {x}^{2}  + 1)} dx

 \sf \:=\dfrac{1}{2} \displaystyle \int \sf \: \dfrac{({x}^{2} + 1) }{ ({x}^{2} - 1)( {x}^{2}  + 1)} dx  -\dfrac{1}{2} \displaystyle \int \sf \: \dfrac{({x}^{2}  -  1) }{ ({x}^{2} - 1)( {x}^{2}  + 1)} dx

 \sf \:  \:  =  \:\dfrac{1}{2} \displaystyle \int \sf \: \dfrac{dx}{ {x}^{2} - 1 }  - \dfrac{1}{2}\displaystyle \int \sf \: \dfrac{dx}{ {x}^{2}  +  1}

 \sf \:  \:  =  \:\dfrac{1}{2} \times \dfrac{1}{2 \times 1}log |\dfrac{x - 1}{x + 1} |  - \dfrac{1}{2} \times \dfrac{1}{1} {tan}^{ - 1}\dfrac{x}{1} + c

 \sf \:  \:  =  \:\dfrac{1}{4}log |\dfrac{x - 1}{x + 1} | - \dfrac{1}{2} {tan}^{ - 1}x + c

Additional Information :-

 \boxed{ \red{\displaystyle \int \sf \: \dfrac{dx}{ {a}^{2}  -   {x}^{2}} = \dfrac{1}{2a}log\dfrac{a + x}{a - x} + c}}

 \boxed{ \red {\displaystyle \int \sf \: \dfrac{dx}{ \sqrt{ {a}^{2} -  {x}^{2}}} =  {sin}^{ - 1}\dfrac{x}{a} + c }}

 \boxed{ \red {\displaystyle \int \sf \: \dfrac{dx}{ \sqrt{ {x}^{2} -  {a}^{2}}} = log |x +  \sqrt{ {x}^{2} -  {a}^{2}  } | + c}}

 \boxed{ \red {\displaystyle \int \sf \: \dfrac{dx}{ \sqrt{ {x}^{2}  +  {a}^{2}}} = log |x +  \sqrt{ {x}^{2}  +   {a}^{2}  } | + c}}

Similar questions