Math, asked by rochanaratakonda, 1 month ago

Question is in attachment
pls give relevant answer​

Attachments:

Answers

Answered by ajr111
10

Answer:

\mathrm{\bigg(\dfrac{ (c-b). ln(x-a) + (a-c).ln(x-b) + (b-a). ln(x-c)}{(a-b)(b-c)(c-a)} \bigg)  + K}

Step-by-step explanation:

Given :

\int \dfrac{1}{(x-a)(x-b)(x-c)}  \, dx

To find :

Evaluate the integral

Solution :

First let us resolve this into partial fractions

  • Resolving into partial fractions, we get,

\dfrac{1}{(x-a)(x-b)(x-c)} =  \\\\\\ \bigg( \dfrac{1}{(x-a)(a-b)(a-c)} + \dfrac{1}{(x-b)(b-a)(b-c)}  + \dfrac{1}{(x-c)(c-a)(c-b)} \bigg)

  • Taking (a-b)(b-c)(c-a) common we get,

\implies \bigg(\dfrac{1}{(a-b)(b-c)(c-a)} \bigg) \bigg( \dfrac{c-b}{x-a} + \dfrac{a-c}{x-b} +  \dfrac{b-a}{x-c} \bigg)

This is the fractional part of the given interval

  • So, substituting in the integral we get,

\implies \bigg(\dfrac{1}{(a-b)(b-c)(c-a)} \bigg){ \huge {\text{$\int$}} } \bigg( \dfrac{c-b}{x-a} + \dfrac{a-c}{x-b} +  \dfrac{b-a}{x-c} \bigg) \, dx

  • Writing them separately

\implies \bigg(\dfrac{1}{(a-b)(b-c)(c-a)} \bigg)\Bigg[ {\huge {\text{$\int$}}}  \bigg( \dfrac{c-b}{x-a} \bigg) \, dx + { \huge {\text{$\int$}} } \bigg(\dfrac{a-c}{x-b} \bigg)\, dx +  {\huge {\text{$\int$}}}  \bigg( \dfrac{b-a}{x-c} \bigg) \, dx \Bigg]

  • Solving each separately,

We know that,

\boxed {\mathrm { \large {\text{$\int$}} \dfrac{1}{x-a} \, dx = ln (x-a) + k \ ; \ k = constant}}

So,

\longmapsto  {\huge {\text{$\int$}}} \bigg(\dfrac{c-b}{x-a} \bigg) \, dx = (c-b) . ln(x-a) + k

\longmapsto { \huge {\text{$\int$}}} \bigg(\dfrac{a-c}{x-b} \bigg) \, dx = (a-c) . ln(x-b) + k

\longmapsto { \huge {\text{$\int$}} }\bigg(\dfrac{b-a}{x-c} \bigg) \, dx = (b-a) . ln(x-c) + k

Here, k = some constant

  • Now rewriting the equations, we get,

\implies \mathrm {\bigg(\dfrac{1}{(a-b)(b-c)(c-a)} \bigg) \Big( (c-b). ln(x-a) + (a-c).ln(x-b) + (b-a). ln(x-c) + K\Big)}Thus, this is the required answer

\implies \underline{\boxed {\mathbf {\bigg(\dfrac{ (c-b). ln(x-a) + (a-c).ln(x-b) + (b-a). ln(x-c)}{(a-b)(b-c)(c-a)} \bigg) } + K}}

Here, K = constant

Hope it helps!!

Similar questions