Math, asked by rochanaratakonda, 1 day ago

Question is in attachment
pls give relevant answer​

Attachments:

Answers

Answered by shivamraykwar1998
3

If 3A= A(x)=(x -2 )

If= x=2 A(2)=(2-2) A(2)=0 answer hai or Achcha Lage to comment karna ok see you

Answered by ajr111
9

Answer:

Given :

\mathrm{3A = \left[\begin{array}{ccc}1&2&2\\2&1&-2\\-2&2&-1\end{array}\right] }

To Prove :

\mathrm{A^{-1} = A'}

Solution :

\longmapsto \mathrm{3A = \left[\begin{array}{ccc}1&2&2\\2&1&-2\\-2&2&-1\end{array}\right] }

\implies \mathrm{A = \dfrac{1}{3}\left[\begin{array}{ccc}1&2&2\\2&1&-2\\-2&2&-1\end{array}\right] }

  • Transverse of Matrix A,

Transverse of a Matrix is to replace rows by columns or vice versa.

\implies\mathrm{A' = \dfrac{1}{3}\left[\begin{array}{ccc}1&2&-2\\2&1&2\\2&-2&-1\end{array}\right]} ______[1]

  • Det of A is :

\implies\mathrm{|A| = \bigg(\dfrac{1}{3}\bigg)^3\left|\begin{array}{ccc}1&2&2\\2&1&-2\\-2&2&-1\end{array}\right|}

\implies\mathrm{|A| = \bigg(\dfrac{1}{27}\bigg) \Big(1(-1+4) - 2(-2-4)+2(4+2)\Big)}

\implies\mathrm{|A| = \bigg(\dfrac{1}{27}\bigg) \Big(3 +12+12\Big)}

\implies\mathrm{|A| = \bigg(\dfrac{1}{\cancel{27}}\bigg) \Big(\cancel{27}\Big)}

\implies\mathrm{|A| = 1}

  • Cofactor matrix of A :

\implies \mathrm{ \dfrac{1}{9}\left[\begin{array}{ccc}3&6&6\\6&3&-6\\-6&6&-3\end{array}\right] }

\implies \mathrm{ \dfrac{1}{3}\left[\begin{array}{ccc}1&2&2\\2&1&-2\\-2&2&-1\end{array}\right] }

  • Adjoint of A :

Adjoint of A is transverse of cofactor matrix of A

\implies \mathrm{\dfrac{1}{3} \left[\begin{array}{ccc}1&2&-2\\2&1&2\\2&-2&-1\end{array}\right] }

  • Inverse of A :

We know that,

\boxed{\mathrm{A^{-1} = \dfrac{AdjA}{|A|}}}

\implies \mathrm{A^{-1} = \dfrac{\dfrac{1}{3} \left[\begin{array}{ccc}1&2&-2\\2&1&2\\2&-2&-1\end{array}\right]}{1}}

\implies \mathrm{A^{-1} = \dfrac{1}{3} \left[\begin{array}{ccc}1&2&-2\\2&1&2\\2&-2&-1\end{array}\right]}_____[2]

So, from [1] and [2], we can conclude that,

\blue \bigstar \ \underline{\boxed{\mathbf{A^{-1} = A'}}}

\underline{\Large{\textsf{Hence Proved!!}}}

Hope it helps!!

Similar questions