Question is in attachment Plz solve it Urgent !
Answer can be more than Correct option :)
All the best ^•^
Answers
Answer:
option d) dependent on alpha and beeta
Option (C)
Step-by-step explanation:
Solution :-
Given that
Cos² (α+β) + Cos²(α-β)-Cos 2α Cos 2β
On taking Cos² (α+β)
=> [Cos (α+β)]²
We know that
Cos (A+B) = Cos A Cos B - Sin A Sin B
Cos²(α+β) = (Cos α Cos β - Sin α Sin β)²
=> Cos² α Cos² β + Sin² α Sin² β -
2 Cos α Cos β Sin α Sin β ------(1)
On taking Cos²(α-β)
=> [Cos (α-β)]²
We know that
Cos (A-B) = Cos A Cos B + Sin A Sin B
Cos²(α-β) = (Cos α Cos β +Sin α Sin β)²
=> Cos² α Cos² β + Sin² α Sin² β +
2 Cos α Cos β Sin α Sin β --------(2)
On adding (1)&(2)
=> Cos² (α+β) + Cos²(α-β)
=> Cos² α Cos² β + Sin² α Sin² β - 2 Cos α Cos β Sin α Sin β + Cos² α Cos² β + Sin² α Sin² β + 2 Cos α Cos β Sin α Sin β
=> 2 Cos² α Cos² β +2 Sin² α Sin² β ----(3)
We know that
Cos 2A = Cos² A - Sin² A
Cos 2α = Cos² α- Sin² α ------(4)
Cos 2β = Cos² β- Sin²β ------(5)
Now,
On multiplying (4)&(5)
Cos 2α.Cos 2β
=> (Cos² α- Sin² α)(Cos² β- Sin²β)
=> Cos² α Cos² β - Cos²α Sin²β- Sin² α Cos² β + Sin² α Sin²β -------(6)
Now
On Subtracting (6) from (3)
=> Cos² (α+β) + Cos²(α-β)-Cos 2α Cos 2β
=> (2 Cos² α Cos² β +2 Sin² α Sin² β) - (Cos² α Cos² β - Cos²α Sin²β- Sin² α Cos² β + Sin² α Sin²β)
=> 2 Cos² α Cos² β +2 Sin² α Sin² β - Cos² αCos² β+Cos²α Sin²β+ Sin²αCos² β - Sin² α Sin²β
=> Cos² α Cos² β +Cos²α Sin²β+ Sin² α Cos² β + Sin² α Sin²β
=> Cos²α(Sin²β+Cos² β)+ Sin²α(Cos² β +Sin²β)
=> Cos²α(1)+ sin²α(1)
Since, Sin² A + Cos² A = 1
=> Sin²α + Cos²α
=> 1
It is independent of α and β
Answer:-
The equation Cos² (α+β) + Cos²(α-β)-Cos 2α Cos 2β is an independent of α and β.
Used formulae:-
→ Cos (A+B) = Cos A Cos B - Sin A Sin B
→ Cos (A-B) = Cos A Cos B + Sin A Sin B
→ Cos 2A = Cos² A - Sin² A
→ Sin² A + Cos² A = 1