Question is in attachment Plz solve it Urgent !
More than type answer -,-
Answers
Given:
→ p = sin(α - β) sin(γ - δ)
→ q = sin(β - γ) sin(α - δ)
→ r = sin(γ - α) sin(β - δ)
We know that:
→ 2 sin(x) sin(y) = cos(x - y) - cos(x + y)
Therefore:
→ p = sin(α - β) sin(γ - δ)
→ 2p = 2 sin(α - β) sin(γ - δ)
→ 2p = cos(α - β - γ + δ) - cos(α - β + γ - δ) – (i)
Similarly, we can write:
→ 2q = cos(β - γ - α + δ) - cos(β - γ + α - δ) – (ii)
→ 2r = cos(γ - α - β + δ) - cos(γ - α + β - δ) – (iii)
Adding (i), (ii) and (iii), we get:
→ 2p + 2q + 2r = cos(α - β - γ + δ) - cos(α - β + γ - δ) + cos(β - γ - α + δ) - cos(β - γ + α - δ) + cos(γ - α - β + δ) - cos(γ - α + β - δ)
We know that:
→ cos(x) = cos(-x)
Therefore:
→ 2p + 2q + 2r = cos(α - β - γ + δ) - cos(α - β + γ - δ) + cos(β - γ - α + δ) - cos(β - γ + α - δ) + cos(γ - α - β + δ) - cos(γ - α + β - δ)
→ 2p + 2q + 2r = cos(α - β - γ + δ) - cos(α - β + γ - δ) + cos(β - γ - α + δ) - cos(β - γ + α - δ) + cos(γ - α - β + δ) - cos(-(γ - α + β - δ))
→ 2p + 2q + 2r = cos(α - β - γ + δ) - cos(α - β + γ - δ) + cos(β - γ - α + δ) - cos(β - γ + α - δ) + cos(γ - α - β + δ) - cos(α - β - γ + δ)
cos(α - β - γ + δ) gets cancelled out. We get:
→ 2p + 2q + 2r = - cos(α - β + γ - δ) + cos(β - γ - α + δ) - cos(β - γ + α - δ) + cos(γ - α - β + δ)
Again, applying the same identity, we get:
→ 2p + 2q + 2r = - cos(α - β + γ - δ) + cos(-(β - γ - α + δ)) - cos(β - γ + α - δ) + cos(γ - α - β + δ)
→ 2p + 2q + 2r = - cos(α - β + γ - δ) + cos(α - β + γ - δ) - cos(β - γ + α - δ) + cos(γ - α - β + δ)
cos(α - β + γ - δ) gets cancelled out. We get:
→ 2p + 2q + 2r = - cos(β - γ + α - δ) + cos(γ - α - β + δ)
This too gets cancelled out. So, we get:
→ 2p + 2q + 2r = 0
→ p + q + r = 0
★ Hence, option b is the correct answer for the problem.
1. Relationship between sides.
- sin(x) = Height/Hypotenuse.
- cos(x) = Base/Hypotenuse.
- tan(x) = Height/Base.
- cot(x) = Base/Height.
- sec(x) = Hypotenuse/Base.
- cosec(x) = Hypotenuse/Height.
2. Square formulae.
- sin²x + cos²x = 1.
- cosec²x - cot²x = 1.
- sec²x - tan²x = 1
3. Reciprocal Relationship.
- sin(x) = 1/cosec(x).
- cos(x) = 1/sec(x).
- tan(x) = 1/cot(x).
4. Cofunction identities.
- sin(90° - x) = cos(x) and vice versa.
- cosec(90° - x) = sec(x) and vice versa.
- tan(90° - x) = cot(x) and vice versa.
5. Even odd identities.
- sin(-x) = -sin(x)
- cos(-x) = cos(x)
- tan(-x) = -tan(x)
Answer:
Solution
:
Given:
→ p = sin(α - β) sin(γ - δ)
→ q = sin(β - γ) sin(α - δ)
→ r = sin(γ - α) sin(β - δ)
We know that:
→ 2 sin(x) sin(y) = cos(x - y) - cos(x + y)
Therefore:
→ p = sin(α - β) sin(γ - δ)
→ 2p = 2 sin(α - β) sin(γ - δ)
→ 2p = cos(α - β - γ + δ) - cos(α - β + γ - δ) – (i)
Similarly, we can write:
→ 2q = cos(β - γ - α + δ) - cos(β - γ + α - δ) – (ii)
→ 2r = cos(γ - α - β + δ) - cos(γ - α + β - δ) – (iii)
Adding (i), (ii) and (iii), we get:
→ 2p + 2q + 2r = cos(α - β - γ + δ) - cos(α - β + γ - δ) + cos(β - γ - α + δ) - cos(β - γ + α - δ) + cos(γ - α - β + δ) - cos(γ - α + β - δ)
We know that:
→ cos(x) = cos(-x)
Therefore:
→ 2p + 2q + 2r = cos(α - β - γ + δ) - cos(α - β + γ - δ) + cos(β - γ - α + δ) - cos(β - γ + α - δ) + cos(γ - α - β + δ) - cos(γ - α + β - δ)
→ 2p + 2q + 2r = cos(α - β - γ + δ) - cos(α - β + γ - δ) + cos(β - γ - α + δ) - cos(β - γ + α - δ) + cos(γ - α - β + δ) - cos(-(γ - α + β - δ))
→ 2p + 2q + 2r = cos(α - β - γ + δ) - cos(α - β + γ - δ) + cos(β - γ - α + δ) - cos(β - γ + α - δ) + cos(γ - α - β + δ) - cos(α - β - γ + δ)
cos(α - β - γ + δ) gets cancelled out. We get:
→ 2p + 2q + 2r = - cos(α - β + γ - δ) + cos(β - γ - α + δ) - cos(β - γ + α - δ) + cos(γ - α - β + δ)
Again, applying the same identity, we get:
→ 2p + 2q + 2r = - cos(α - β + γ - δ) + cos(-(β - γ - α + δ)) - cos(β - γ + α - δ) + cos(γ - α - β + δ)
→ 2p + 2q + 2r = - cos(α - β + γ - δ) + cos(α - β + γ - δ) - cos(β - γ + α - δ) + cos(γ - α - β + δ)
cos(α - β + γ - δ) gets cancelled out. We get:
→ 2p + 2q + 2r = - cos(β - γ + α - δ) + cos(γ - α - β + δ)
This too gets cancelled out. So, we get:
→ 2p + 2q + 2r = 0
→ p + q + r = 0
★ Hence, option b is the correct answer for the problem.
\textsf{\large{\underline{Learn More}:}}
Learn More
:
1. Relationship between sides.
sin(x) = Height/Hypotenuse.
cos(x) = Base/Hypotenuse.
tan(x) = Height/Base.
cot(x) = Base/Height.
sec(x) = Hypotenuse/Base.
cosec(x) = Hypotenuse/Height.
2. Square formulae.
sin²x + cos²x = 1.
cosec²x - cot²x = 1.
sec²x - tan²x = 1
3. Reciprocal Relationship.
sin(x) = 1/cosec(x).
cos(x) = 1/sec(x).
tan(x) = 1/cot(x).
4. Cofunction identities.
sin(90° - x) = cos(x) and vice versa.
cosec(90° - x) = sec(x) and vice versa.
tan(90° - x) = cot(x) and vice versa.
5. Even odd identities.
sin(-x) = -sin(x)
cos(-x) = cos(x)
tan(-x) = -tan(x)