Math, asked by dilipkumarhawks, 8 months ago

question is in photo answer correctly​

Attachments:

Answers

Answered by Anonymous
16

Question :-

 \large \bullet \sf \blue{ \frac{tan \theta - cot \theta}{sin \theta.cos \theta}  = sec {}^{2}  \theta - cosec {}^{2}  \theta}

Solution :-

LHS :-

 \implies\: \large \sf \orange{ \frac{tan \theta - cot \theta}{sin \theta.cos \theta}}

 \implies \: \large \sf \large \:  \frac{ \frac{sin \theta}{cos \theta} -  \frac{cos \theta}{sin \theta}  }{sin \theta.cos \theta}

 \implies \large \:   \sf \:  \frac{sin {}^{2}  \theta - cos {}^{2} \theta }{(sin \theta.cos \theta)(cos \theta .sin \theta)}

 \implies \large \sf \:  \frac{sin {}^{2} \theta  - cos {}^{2} \theta }{sin {}^{2}  \theta.cos {}^{2} \theta }

 \implies \large \sf \:  \frac{ sin {}^{2} \theta  }{sin {}^{2} \theta.cos {}^{2} \theta  }  -  \frac{cos {}^{2} \theta }{sin {}^{2} \theta.cos {}^{2}  \theta }

 \implies \sf \large \:  \frac{1}{cos {}^{2} \theta } -  \frac{1}{sin {}^{2} \theta }

 \implies \sf \large \red{sec {}^{2}  \theta - cosec {}^{2}  \theta}

RHS.

Hence,

 \large \bullet \sf \green{ \frac{tan \theta - cot \theta}{sin \theta.cos \theta}  = sec {}^{2}  \theta - cosec {}^{2}  \theta}

Answered by InfiniteSoul
9

Identity :-

⠀⠀

\sf{\bold{\dfrac{ tan\theta - cot\theta}{sin\theta . cos\theta } = sec^2\theta - cos^2\theta}}

⠀⠀⠀⠀

LHS:-

⠀⠀

: \sf\implies \: {\bold {\dfrac{ tan\theta - cot\theta } { sin\theta . cos\theta}}}

⠀⠀⠀⠀

  • \sf{\red{\boxed{\bold{tan\theta = \dfrac{sin\theta}{cos\theta}}}}}

⠀⠀⠀⠀

  • \sf{\red{\boxed{\bold{cot\theta = \dfrac{cos\theta}{sin\theta}}}}}

⠀⠀

: \sf\implies \: {\bold {\dfrac{ \dfrac{sin\theta}{cos\theta} - \dfrac{cos\theta}{sin\theta} } { sin\theta . cos\theta}}}

⠀⠀⠀⠀

: \sf\implies \: {\bold {\dfrac{ \dfrac{sin^2\theta - cos^2\theta}{sin\theta. cos\theta} } { sin\theta . cos\theta}}}

⠀⠀⠀⠀

: \sf\implies \: {\bold {{ \dfrac{sin^2\theta - cos^2\theta}{sin\theta. cos\theta} } \div { sin\theta . cos\theta}}}

⠀⠀⠀⠀

: \sf\implies \: {\bold {{ \dfrac{sin^2\theta - cos^2\theta}{sin\theta. cos\theta} } \times \dfrac{1} { sin\theta . cos\theta}}}

⠀⠀⠀⠀

: \sf\implies \: {\bold {\dfrac{ sin^2\theta - cos^2\theta } { sin^2\theta . cos^2\theta}}}

⠀⠀

: \sf\implies \: {\bold {\dfrac{\cancel{sin^2\theta}}{\cancel{sin^2\theta } . cos^2\theta} - \dfrac{\cancel{cos^2\theta}}{ sin^2\theta . \cancel{cos^2\theta }} }}

⠀⠀

: \sf\implies \: {\bold{\dfrac{1}{cos^2\theta} - \dfrac{1}{sin^2\theta}}}

⠀⠀⠀⠀

  • \sf{\red{\boxed{\bold{sec^2\theta= \dfrac{1}{cos^2}}}}}

⠀⠀

  • \sf{\red{\boxed{\bold{cosec^2\theta= \dfrac{1}{sin^2}}}}}

⠀⠀

: \sf\implies \: {\bold{ sec^2\theta - cosec^2\theta }}

⠀⠀⠀⠀

RHS :-

⠀⠀⠀⠀

: \sf\implies \: {\bold{ sec^2\theta - cosec^2\theta }}

⠀⠀⠀⠀

Compare:-

\sf \: {\bold{ sec^2\theta - cosec^2\theta }} = \sf \: {\bold{ sec^2\theta - cosec^2\theta }}

⠀⠀⠀⠀

......Hence proved

⠀⠀⠀⠀

⠀⠀⠀⠀

⠀⠀⠀⠀

Similar questions