Math, asked by anu123432, 1 year ago

question is in pic, fast guys

Attachments:

Answers

Answered by Ruchika08
1
Hey,

In isosceles triangle ABC:-

AC = BC 

AP * BQ = AC^2 

prove that: ΔACP ~ ΔBCQ => prove similarity 

∠CAB = ∠CBA => base angles of isosceles triangle 

∠CAB + ∠CAP = 180° => linear pair 

∠CAP = 180° - ∠CAB => eq-1 

also: 
∠CBA + ∠CBQ = 180° => linear pair 

∠CBQ = 180° - ∠CBA => eq-2 

from 1 and 2 we get: 

∠CAP = ∠CBQ 

given: 
AP * BQ = AC^2, then: 

AP/AC = AC/BQ 

also: 
AP/AC = BC/BQ, thus: 

AP = BQ 

therefore by SAS: 

ΔACP ~ ΔBCQ 

HOPE IT HELPS YOU:-))
Answered by fanbruhh
3

 \huge{hey}

 \huge{ \mathfrak{here \: is \: answer}}


 \bf{given}

AB=AC=>/_B=/_C

 \sf{180 \degree -  \angle{b} = 180 \degree -  \angle{c}}


 \sf{so \:  \angle{abp} =  \angle{acq}}

also given that

BP*CQ=AB*AB
 \sf{ \frac{bp}{ba}  =  \frac{ab}{qc}}

 \sf{ \frac{bp}{ca}  =  \frac{ab}{qc}}
(since, ab=ac)



 \sf{ \frac{bp}{ca} =  \frac{ab}{qc}  and \angle{pba} =  \angle{qca}}

hence


triangle BPA~ triangle CAQ


   \huge \boxed{ \ulcorner{hope \: it \: helps}}


 \huge{ \mathfrak{ \mathbb{THANKS}}}


brainlyboytopper: hlo
brainlyboytopper: ro
brainlyboytopper: plz solve
Similar questions