Math, asked by Anonymous, 7 months ago

Question is in pic please solve it​

Attachments:

Answers

Answered by Anonymous
72

Given,

  • Side of the signal board = a
  • Perimeter of the signal board = 3a = 180 cm

∴ a = 60 cm

Semi perimeter of the signal board = \sf \frac{3a}{2}

By using Heron’s formula,

Area of the triangular signal board will be :-

 \sf \sqrt{s(s - a)(s - b)(s - c)} \\  \\   \sf=  \sqrt{ (\frac{3a}{2}) \: (\frac{3a}{2}  - a) \: ( \frac{3a}{2} - a) \: ( \frac{3a}{2} - a)} \\  \\ \sf = \sqrt{ \frac{3a}{2} \times  \frac{a}{2} \times  \frac{a}{2}   \times  \frac{a}{2}  }  \\  \\ \sf =  \sqrt{ \frac{ {3a}^{4} }{16} } \\  \\  \sf=  \sqrt{ \frac{ {3a}^{2} }{4} }  \\  \\  \sf=  \sqrt{ \frac{3}{4} } \times 60 \times 60  \\  \\  \sf=\boxed{ \bf900 \sqrt{3} \:   {cm}^{2}}


ButterFliee: Nice :)
BrainlyPopularman: Perfect :)
TheMoonlìghtPhoenix: Great!
Anonymous: Nice :D
Anonymous: Amazing!
amitkumar44481: Great :-)
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
18

\huge\sf\pink{Answer}

☞ Your Answer is 900√3 cm²

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ Side of an equilateral triangle is a

✭ Perimeter is 180 cm

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ The area of the board using Heron's Formula?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

Heron's Formula is given by,

\underline{\boxed{\sf\sqrt{s(s-a)(s-b)(s-c)}}}

We shall first find the value of s,

\sf Half \ Perimeter = \dfrac{180}{2}

\sf \green{Half \ Perimeter = 90}

So now that we are given that perimeter is 180 cm

»» \sf a+a+a=180

»» \sf 3a=180

»» \sf a=\dfrac{180}{3}

»» \sf \red{a=60}

Now on substituting the values in the formula,

\sf \sqrt{s(s-a)(s-b)(s-c)}

\sf \sqrt{90(90-60)(90-60)(90-60)}

\sf \sqrt{90(30)(30)(30)}

\sf \sqrt{90(2700)}

\sf \sqrt{2430000}

\sf \sqrt{243 \times 10^4}

\sf \sqrt{3\times 3\times 3\times 3 \times 3 \times 10^4}

\sf 3\times 3 \times 100\sqrt{3}

\sf \orange{900\sqrt{3} \ cm^2}

━━━━━━━━━━━━━━━━━━


ButterFliee: Great :)
BrainlyPopularman: Awesome :)
TheMoonlìghtPhoenix: Great!
Anonymous: Amazing!
Anonymous: Nice:D
Similar questions