Math, asked by Anonymous, 1 day ago

Question is in the attachment.
please answer.
Thank you in advance !​

Attachments:

Answers

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
73

Information provided with us :

  • \sf{A.P. \:  is  \:  \: 20,  \: 19\dfrac{1}{3}  \: , \:  18\dfrac{2}{3} ...}
  • Sum of that A.P. is 300

What we have to calculate :

  • Number of terms of that given A.P. ?

Using Formulas :

Sum of n terms of an A.P. is calculated by,

  • \red{\boxed{\bf{S_{n} =  \dfrac{n}{2} \: [2a + (n - 1)d ]}}}

Here,

  • n is number of terms
  • d is common difference
  • a is first term of the A.P.

Performing Calculations :

Finding out common difference (d) :-

\implies \sf{d  \: =  \: 19 \dfrac{1}{3} - 20 }

\implies \: \sf{d  \: =  \: 19 \dfrac{1}{3} -  \dfrac{20}{1}  }

\implies \: \sf{d  \: =  \:  \dfrac{19 \times 3 + 1}{3} -  \dfrac{20}{1}  }

\implies \: \sf{d  \: =  \:  \dfrac{57+ 1}{3} -  \dfrac{20}{1}  }

\implies \: \sf{d  \: =  \:  \dfrac{58}{3} -  \dfrac{20}{1}  }

 \implies \: \sf{d  \: =  \:  \dfrac{58}{3} -  \dfrac{20 \times 3}{1 \times 3}  }

\implies \: \sf{d  \: =  \:  \dfrac{58 - 60}{3}  }

\implies \:  \boxed{\sf{d  \: =  \:  \dfrac{ - 2}{3}  }}

Putting the values :

: \longmapsto \:  300 =  \dfrac{ \sf{n}}{2} [(2)(20) + ( \sf{n} - 1)  - \dfrac{1}{2}

: \longmapsto \:  300 =  \dfrac{ \sf{n}}{2} [(2 \times 20) + ( \sf{n} - 1)  - \dfrac{1}{2}

: \longmapsto \:  300 =  \dfrac{ \sf{n}}{2} [40 + ( \sf{n} - 1)  - \dfrac{1}{2}

: \longmapsto \:  300 =  \dfrac{ \sf{n}}{2}  \bigg[40  - \dfrac{2}{3}n \:  +  \dfrac{2}{3} \bigg ]

: \longmapsto \:  300 \times 2 =  n \bigg[40  - \dfrac{2}{3}n \:  +  \dfrac{2}{3} \bigg ]

: \longmapsto \:  600=  n \bigg[40  - \dfrac{2}{3}n \:  +  \dfrac{2}{3} \bigg ]

: \longmapsto \:  600=  n \bigg[  \dfrac{40}{1}   - \dfrac{2}{3}n \:  +  \dfrac{2}{3} \bigg ]

: \longmapsto \:  600=  n \bigg[  \dfrac{40 \times 3}{1 \times 3}   - \dfrac{2}{3}n \:  +  \dfrac{2}{3} \bigg ]

: \longmapsto \:  600=  n \bigg[  \dfrac{120 - 2n + 2}{3} \bigg ]

: \longmapsto \:  600=  n \times  \bigg[  \dfrac{120 - 2n + 2}{3} \bigg ]

: \longmapsto \:   \sf{600 \times 3=   120n- 2n {}^{2}  + 2n}

: \longmapsto \:   \sf{1800=   120n- 2n {}^{2}  + 2n}

: \longmapsto \:   \sf{1800=   122n- 2n {}^{2} }

: \longmapsto \:   \sf{ 2n {}^{2}  - 122n + 1800 = 0}

: \longmapsto \:   \sf{ n {}^{2}  - 61n + 900 = 0}

: \longmapsto \:   \sf{(n - 25)(n - 36) = 0}

On comparing them we gets 25 and 36.

\underline{ \bf{Henceforth,  \: no. \: of \: terms \: are \: 25 \: or \: 36}}

Answered by Anonymous
6

Given:-

Ap is in the attachment

To Find:-

No. of terms

Solution:-

Refer the attachment

Attachments:
Similar questions