Math, asked by venkatreddypotlapati, 5 months ago

question is in the photo​

Attachments:

Answers

Answered by john332
1

Answer:

let, y=\lim_{x \to a}(2-x/a)tan\frac{\pi x}{2a} \\

taking log on both sides

log(y)=\lim_{x \to a}tanlog(\frac{\pi x}{2a} (2-x/a))

        =\lim_{x \to a}\frac{(log(2-x/a))}{cot\frac{\pi x}{2a} }        [0/0 form]

applying L' Hospital rule

        =\lim_{x \to a}\frac{\frac{1}{(2-x/a)}*(\frac{-1}{a})  }{-cosec^{2}\frac{\pi x}{2a} *\frac{\pi }{2a}  }

        =\frac{(-1/a)}{(-\pi /2a)}

        =2/\pi

∴log(y)=2/π

or,y=e^{\frac{2}{\pi } }

\lim_{x \to a} (2-x/a)tan\frac{\pi x}{2a} =e^{2/\pi }

Similar questions