Math, asked by sdhhddjdnzbbsjznzs, 4 months ago

Question is to simplify This ​

Attachments:

Answers

Answered by Dinosaurs1842
6

 \dfrac{ {( - 2}^{3}) \times ( { - 2}^{7})  }{3 \times  {4}^{6} }

we know that,

 {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

\dfrac{ {( - 2}^{3 + 7}) }{3 \times  ({2}^{2})^{6} }

( {a}^{n})^{m}  =  {a}^{mn}

\dfrac{( { - 2}^{10})}{3 \times ( {2}^{12}) }

\dfrac{1}{3}  \times  \dfrac{{ - 2}^{10} }{ {2}^{12} }

as the power is even,

\dfrac{1}{3}  × \dfrac{2^{10} }{2^{12} }

a^{m} ÷ a^{n} = a^{m-n}

\dfrac{1}{3} × 2^{10-12}

\dfrac{1}{3} × 2⁻²

a^{-m} = \dfrac{1}{a^{m} }

\dfrac{1}{3} × \dfrac{1}{2^{2} }

\dfrac{1}{3} × \dfrac{1}{4}

Answer => \dfrac{1}{12}

Important points to remember :

 {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 {a}^{m}  \times  {b}^{m}  =  {ab}^{m}

 {a}^{m}  \div  {a}^{n}  =  {a}^{m - n}

 {a}^{m}  \div  {b}^{m}  =  (\frac{ a}{b}) ^{m}

 {a}^{ - m}  =  \frac{1}{ {a}^{m} }

Answered by sanjanajaiswal41
1

Answer:

Hope you get the answer of your question☺️ and also the answer are correct❤️

Attachments:
Similar questions