Math, asked by Itzheartcracer, 2 days ago

QuestioN!!
It is given that x > 3. Then, evaluate the value of
\sf\dfrac{1}{\dfrac{1}{x+2}+\dfrac{1}{x+3}}

Answers

Answered by mathdude500
28

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\sf\dfrac{1}{\dfrac{1}{x+2}+\dfrac{1}{x+3}}

Let assume that

\rm :\longmapsto\:f(x) = \sf\dfrac{1}{\dfrac{1}{x+2}+\dfrac{1}{x+3}}

can be rewritten as

\rm :\longmapsto\:f(x) = \sf\dfrac{1}{\dfrac{x + 2 + x + 3}{(x + 3)(x+2)}}

\rm :\longmapsto\:f(x) =\dfrac{(x + 3)(x + 2)}{2x + 5}

\rm :\longmapsto\:f(x) =\dfrac{ {x}^{2} + 3x + 2x + 6 }{2x + 5}

\rm :\longmapsto\:f(x) =\dfrac{ {x}^{2} +5x + 6 }{2x + 5}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} f(x) =\dfrac{d}{dx} \: \dfrac{ {x}^{2} +5x + 6 }{2x + 5}

\rm :\longmapsto\:f'(x) = \dfrac{(2x + 5)\dfrac{d}{dx}( {x}^{2}  + 5x + 6) - ( {x}^{2}  + 5x + 6)\dfrac{d}{dx}(2x + 5)}{ {(2x + 5)}^{2} }

\rm :\longmapsto\:f'(x) = \dfrac{(2x + 5)(2x + 5)- ( {x}^{2}  + 5x + 6)(2)}{ {(2x + 5)}^{2} }

\rm :\longmapsto\:f'(x) = \dfrac{ {4x}^{2} + 25 + 20x - 2{x}^{2} - 10x - 12}{ {(2x + 5)}^{2} }

\rm :\longmapsto\:f'(x) = \dfrac{ {2x}^{2}  + 10x + 13 }{ {(2x + 5)}^{2} }

Now, Let us consider,

\rm :\longmapsto\: {2x}^{2} + 10x + 13

Its a quadratic expression with a = 2 > 0 and its Discriminant is

\rm :\longmapsto\:Discriminant, \: D =  {10}^{2} - 4 \times 2 \times 13

\rm :\longmapsto\:Discriminant, \: D =  100 - 104

\rm :\longmapsto\:Discriminant, \: D \:  =   \:  -  \: 4 < 0

Since,

\rm :\longmapsto\:a > 0 \:  \: and \: Discriminant \:  < 0

\bf\implies \: {2x}^{2} + 10x + 13 > 0

So, using this, we get

\rm :\longmapsto\:f'(x) = \dfrac{ {2x}^{2}  + 10x + 13 }{ {(2x + 5)}^{2} }  > 0

\bf\implies \:f(x) \: is \: increasing \: function

As it is given that,

\rm :\longmapsto\:x > 3

and

\rm :\longmapsto\: \:f(x) \: is \: increasing \: function

\bf\implies \:f(x) > f(3)

\rm \implies\:\sf\dfrac{1}{\dfrac{1}{x+2}+\dfrac{1}{x+3}}  >  \sf\dfrac{1}{\dfrac{1}{3+2}+\dfrac{1}{3+3}}

\rm \implies\:\sf\dfrac{1}{\dfrac{1}{x+2}+\dfrac{1}{x+3}}  >  \sf\dfrac{1}{\dfrac{1}{5}+\dfrac{1}{6}}

\rm \implies\:\sf\dfrac{1}{\dfrac{1}{x+2}+\dfrac{1}{x+3}} \:   > \:   \sf\dfrac{1}{\dfrac{6 + 5}{5 \times 6}}

\rm \implies\:\sf\dfrac{1}{\dfrac{1}{x+2}+\dfrac{1}{x+3}} \:   > \:   \sf\dfrac{1}{\dfrac{11}{30}}

\rm \implies\:\sf\dfrac{1}{\dfrac{1}{x+2}+\dfrac{1}{x+3}} \:   > \: \dfrac{30}{11}

Hence,

 \red{\rm \implies\:\boxed{ \tt{ \: \dfrac{1}{\dfrac{1}{x+2}+\dfrac{1}{x+3}} \:   > \: \dfrac{30}{11} \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore more :-

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}


Saby123: Awesome
Similar questions