Physics, asked by Anonymous, 9 months ago

Question :

Let us assume that our galaxy consists of 2.5 x10^11 stars
each of one solar mass. How long will a star at a distance of 50000 light years from the galactic centre take to complete one revolution ? Take the diameter of the milky way to be 10 light years.

-------------

Thanks in advance v_v​

Answers

Answered by Anonymous
37

Solution :

\bullet \:  \sf \: Numbers  \: of  \: stars \:  in  \: our \:  galaxy \:  (N) = 2.5 \: \times  \:   {10}^{11}

 \bullet \:  \sf \: Mass  \: of \:  each \:  star \:  (m) = One  \: solar  \: mass \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \:   \qquad \:  \:  \:  \:  \:  \:   \:  \:  = \sf \:  2  \: \times  \: 10^{30}

 \bullet \:  \sf \: Total \:  mass  \: of \:  the \:  stars \:  in  \: one \:  galaxy = N  \: \times  \: m

\\

: \implies \sf 2.5 \times  {10}^{11}  \times 2 \times  {10}^{30}

\\

: \implies\sf 5.0 \times  {10}^{41} \: kg

\bullet \:  \sf \: Radius \:  of \:  orbit  \: of \:   \: a \:  star \:  (r) = 50000  \: light  \: years

 \star \:  \sf \: But \:  1  \: light  \: year = 9.46  \times  {10}^{5}  \: m

Therefore,

\bigstar \:  \:  \sf   r = 50000 \times 9.46 \times  {10}^{15}  \: m \:  \:  \bigstar

\bigstar  \:  \sf \: Diameter  \: of \:  milky \:  way =  {10}^{5}  \: light \: years. \:  \bigstar

___________________.....

The centripetal force required for orbital motion is obtained from the gravitational force.

Therefore,

\dag \:  \underline{ \boxed {\boxed{\bf \: Centripetal  \: force = Gravitational  \: force} }}\:  \dag

So,

: \implies \sf  \dfrac{m {v}^{2}}{r}  =  \dfrac{GMm}{ {r}^{2} }

\\

:  \implies \sf v^{2}  =  \dfrac{GM}{r}

\\

: \implies \sf (r \omega)^{2}  =  \dfrac{GM}{r} \:  \:  \:  \:  \big \lgroup \bf \because \: v = r \omega \big \rgroup

\\

: \implies \sf  \omega^{2}  =  \dfrac{GM}{r^{3} }

\\

: \implies \sf \bigg \{\dfrac{2\pi}{T} \bigg \} = \dfrac{GM}{r^{3} } \:  \bigg \lgroup \bf {\because \:  \omega =  \dfrac{2\pi}{T}  } \bigg \rgroup

\\

: \implies \sf  T^2 = \dfrac{ 4\pi^{2} r^{3}}{GM}

\\

: \implies \sf T =  \sqrt{ \dfrac{4 \times (3.14)^{2} \:  \times  \: (5 \times 9.46 \times 10^{15}) ^{3}   }{6.67 \times 10^{ - 11}  \times 5 \times  {10}^{41} }}

\\

: \implies \sf T =  \sqrt{12527.5 \times  {10}^{28} }

\\

: \implies \sf  T = 111.93 \times  {10}^{14 } \:  s

\\

: \implies \sf  T =\dfrac{ 111.93 \times  {10}^{14 }}{365 \times 24 \times 3600} \: years

\\

: \implies \underline{  \boxed{\sf  T =3.55 \times  {10}^{8}  \: years}}


ButterFliee: Awesome :)
Answered by Anonymous
19

Correct Question :-

Let us assume that our galaxy consists of 2.5 × 10¹¹ stars  each of one solar mass. How long will a star at a distance of 50000 light years from the galactic center take to complete one revolution? Take the diameter of the milky way to be 10⁵ light

Given :-

Mass of Sombrero Galaxy = \sf 2 \times 10^{11} solar mass

Diameter of Sombrero Galaxy = \sf 5 \times 10^{5}\: ly

To Find :-

Time consumed by the star at a distance of 50000 light years from the galactic center take to complete one revolution.

Solution :-

We know that,

  • d = Diameter
  • m = Mass
  • r = Radius

Given that,

Mass of Sombrero Galaxy, (m) = \sf 2 \times 10^{11} solar mass

Solar mass = Mass of Sun = \sf 2.0 \times 10^{36}\: kg

Mass of the galaxy, (m) = \sf 2.5 \times 10^{11} \times 2 \times 10^{30} = 5 \times 10^{41}\: kg

Diameter of Sombrero Galaxy = \sf 5 \times 10^{5}\: ly

According to the question,

1 light year = \sf 9.46 \times 10^{15}\: m

Therefore, r = \sf 5 \times 10^{4} \times 9.46 \times 10^{15}

Radius \implies \sf 4.73 \times 10^{20}\: m

As this star revolves around the massive black hole in center of the Sombrero galaxy, its time period can be found with the relation:

\sf T= \bigg[\dfrac{4 \pi ^{2} r^{3}}{GM} \bigg]^{\dfrac{1}{2}}

\sf \sqrt{\dfrac{4 \times 3.14^{2} \times 4.73^{3} \times 10^{60}}{6.67 \times 10^{-11} \times 5 \times 10^{41}} }

\implies \sf  1.12 \times 10^{16}\  s

Now we know, 1 year = 365 × 24 × 60 × 60 s

\sf 1 \: s=\dfrac{1}{365 \times 24 \times 60 \times 60}

Therefore,

\sf 1.12 \times 10^{16}s = \dfrac{1.12 \times 10^{16}}{365\times 24\times 60\times 60} \ years

\implies \sf  3.55 \times 10^{8}\ years

Therefore, it will take 3.55 × 10^8 years by the star at a distance of 50000 light years from the galactic center take to complete one revolution.

Similar questions