Math, asked by zayed0605, 7 months ago

question:-
lim x =>0 (ab)^x - a^x - b^x +1 / x^2​

note:-
(do not use L hospital law)
use trigonometry formulas ​

Answers

Answered by BrainlyTornado
20

ANSWER:

\displaystyle \lim_{x \to 0} \sf \frac{ (ab)^x - a^x - b^x +1}{  x^2}=2- \left(\dfrac{1}{  (sin^{-1}a)^2} \right)

(or)

\displaystyle \lim_{x \to 0} \sf \frac{ (ab)^x - a^x - b^x +1}{  x^2} = 2- \left(\dfrac{1}{  (cos^{-1}b)^2} \right)

GIVEN:

\displaystyle \lim_{x \to 0} \sf \frac{ (ab)^x - a^x - b^x +1}{  x^2}

TO FIND:

\displaystyle \lim_{x \to 0} \sf \frac{ (ab)^x - a^x - b^x +1}{  x^2}

Without using L' Hospital's rule.

EXPLANATION:

\displaystyle \lim_{x \to 0} \sf \frac{ (ab)^x - a^x - b^x +1}{  x^2}

\displaystyle \lim_{x \to 0} \sf \frac{ a^xb^x - a^x - b^x +1}{  x^2}

\displaystyle \lim_{x \to 0} \sf \frac{ a^x(b^x -1)-  1(b^x  - 1)}{  x^2}

\displaystyle \lim_{x \to 0} \sf \frac{( a^x - 1)(b^x -1)}{  x^2}

Substitute a = sin x and b = cos x

\displaystyle \lim_{x \to 0} \sf \frac{( (sinx)^x - 1)((cosx)^x -1)}{  x^2}

\displaystyle \lim_{x \to 0} \sf \frac{\left( (sinx)^x  \times  \dfrac{ {x}^{x} }{  {x}^{x}  } - 1\right)\left((cosx)^x \times  \dfrac{ {x}^{x} }{  {x}^{x}  }-1\right)}{  x^2}

Sin x / x = cos x / x = 1

\displaystyle \lim_{x \to 0} \sf \frac{( {x}^{x}   - 1)( {x}^{x}  -1)}{  x^2}

(A - B)(A - B) = (A - B)²

\displaystyle \lim_{x \to 0} \sf \frac{( {x}^{x}   - 1)^{2} }{  x^2}

(A - B)² = A² - 2AB + B²

\displaystyle \lim_{x \to 0} \sf \frac{ {x}^{2x}   - 2  {x}^{x} +  1}{  x^2}

1 = sin² x + cos² x

\displaystyle \lim_{x \to 0} \sf \frac{ {x}^{2x}   - 2  {x}^{x} +   {sin}^{2}x +  {cos}^{2}x  }{  x^2}

  \bold{\dfrac{ {x}^{n} }{ {x }^{n} }  =  {x}^{m - n} }

\displaystyle \lim_{x \to 0} \sf \frac{ {x}^{2x}}{  x^2}   - \dfrac{ 2  {x}^{x}}{  x^2} +    \dfrac{{sin}^{2}x}{  x^2}  +  \dfrac{ {cos}^{2}x  }{  x^2}

\displaystyle \lim_{x \to 0} \sf x^x\left(\frac{ {x}^{x}-2}{  x^2} \right) +    \dfrac{{sin}^{2}x}{  x^2}  +  \dfrac{ {cos}^{2}x  }{  x^2}

Sin² x / x² = cos² x / x² = 1

\displaystyle \lim_{x \to 0} \sf  \ \ \ x^x\left(\frac{ {x}^{x}-2}{  x^2} \right)+   1 + 1

\sf a =  {sin} \  x

\sf x =  {sin}^{ - 1} a

\sf x^2 = (sin^{-1}a)^2

\sf 0^0 \left(\dfrac{ 0^0-2}{  (sin^{-1}a)^2} \right) +   1 + 1

\bold{\large{0^0 = 1}}

\sf \left(\dfrac{ -1}{  (sin^{-1}a)^2} \right) + 2

\sf  2- \left(\dfrac{1}{  (sin^{-1}a)^2} \right)

\displaystyle \lim_{x \to 0} \sf \frac{ (ab)^x - a^x - b^x +1}{  x^2} = 2- \left(\dfrac{1}{  (sin^{-1}a)^2} \right)

Similarly we can use

\sf b =  {cos} \  x

\sf x =  {cos}^{ - 1} b

\sf x^2 = (cos^{-1}b)^2

\displaystyle \lim_{x \to 0} \sf \frac{ (ab)^x - a^x - b^x +1}{  x^2} = 2- \left(\dfrac{1}{  (cos^{-1}b)^2} \right)

Similar questions