Math, asked by anindyaadhikari13, 3 months ago

Question made by me.
Find all the solutions for the given equation.
 \sf \implies {x}^{4} +  {x}^{2} + 1 = 0
Thank you :)​

Answers

Answered by prince5132
46

CORRECT QUESTION :-

¤ Find all the solutions for the given equation x4 + x² + 1 = 0.

GIVEN :-

  • x4 + x² + 1= 0.

TO FIND :-

  • The solutions of the equation .

SOLUTION :-

• Let x² = y.

Therefore new equation becomes,

  \implies \displaystyle \sf \: y ^{2}  + y + 1 = 0 \\

By using the quadratic formula,

 \implies \displaystyle \sf \: y = \dfrac{-b\pm \sqrt {b^{2}-4ac}}{2a}\\

  • a = 1
  • b = 1
  • c = 1

Substitute the values in the formula,

 \implies \displaystyle \sf \: y = \dfrac{-1\pm \sqrt {1^{2}-4\times 1}}{2\times 1}\\

 \implies \displaystyle \sf \: y = \dfrac{-1\pm \sqrt {1-4}}{2}\\

 \implies \displaystyle \sf \: y = \dfrac{-1\pm \sqrt {-3}}{2}\\

 \implies \displaystyle \sf \: y = \dfrac{-1+ \sqrt {-3}}{2} , y = \dfrac{-1-\sqrt{-3}}{2}\\

Now we assumed that y = x². So,

• when y = (-1 + √-3)/2

⇒x² = (-1 + √-3)/2

⇒x=±√{(-1+ √-3)/2}

Therefore,

⇒x1 = √({-1+ √-3)/2}

⇒x2 = -√{(-1+ √-3)/2}

• when y = (-1 + √-3)/2

⇒x² = (-1- √-3)/2

⇒x= ±√{(-1- √-3)/2}

Therefore,

⇒x3 = √((-1- √-3)/2)

⇒x4=-√((-1- √-3)/2)


Anonymous: Great !!
Anonymous: fantastic :D
RockingStarPratheek: Marvellous Bro
anindyaadhikari13: Nice!
ItzCuteboy8: Well done prince ♡
BrainlyHero420: Perfect :p
BrainlyShadow01: Awesome bro
Anonymous: Amazing.
Anonymous: Lots of effort leads to Great Answer :revealed:
Glorious31: Perfect answer
Answered by RockingStarPratheek
166

\sf{x^4+x^2+1=0}

Rewrite the Equation using u = x² and u² = (x²)² = x⁴

\to\sf{u^2+u+1=0}

Now solve the Equation u² + u + 1 = 0

  • We can solve it using Quadratic Equation

\to\sf{u_{1,\:2}=\dfrac{-1\pm \sqrt{1^2-4\cdot \:1\cdot \:1}}{2\cdot \:1}}

\to\sf{u_{1,\:2}=\dfrac{-1\pm \sqrt{3}i}{2\cdot \:1}}

  • Separate the Solutions

\to\sf{\displaystyle u=\frac{-1+\sqrt{3}i}{2\cdot \:1},\:u=\frac{-1-\sqrt{3}i}{2\cdot \:1}}

The Solutions to the Quadratic Equation are :

\to\sf{\displaystyle u=-\frac{1}{2}+i\frac{\sqrt{3}}{2},\:u=-\frac{1}{2}-i\frac{\sqrt{3}}{2}}

Substitute back u = x² and solve for x

\rule{315}{1}

Solve \sf{\displaystyle x^2=-\frac{1}{2}+i\frac{\sqrt{3}}{2}}

  • Substitute x  = a + bi

\to\sf{\displaystyle \left(a+bi\right)^2=-\frac{1}{2}+i\frac{\sqrt{3}}{2}}

\to\sf{\displaystyle\left(a^2-b^2\right)+2iab=-\frac{1}{2}+i\frac{\sqrt{3}}{2}}

  • Complex numbers can be equal only if their real and imaginary parts are equal. Rewrite as system of equations :

\to\begin{bmatrix} \sf{a^2-b^2=-\dfrac{1}{2}}\\\\ \sf{2ab=\dfrac{\sqrt{3}}{2}}\end{bmatrix}

  • On Solving it further, We get

\to\begin{pmatrix}\sf{a=\dfrac{1}{2}},\:&\sf{b=\dfrac{\sqrt{3}}{2}}\\\\ \sf{a=-\dfrac{1}{2}},\:&\sf{b=-\dfrac{\sqrt{3}}{2}}\end{pmatrix}

  • Substitute back x = a + bi

\boxed{\to\sf{\displaystyle x=\frac{1}{2}+\frac{\sqrt{3}}{2}i,\:x=-\frac{1}{2}-\frac{\sqrt{3}}{2}i}}

\rule{315}{1}

Solve \sf{\displaystyle x^2=-\frac{1}{2}-i\frac{\sqrt{3}}{2}}

  • Substitute x  = a + bi

\to\sf{\displaystyle \left(a+bi\right)^2=-\frac{1}{2}-i\frac{\sqrt{3}}{2}}

\to\sf{\displaystyle\left(a^2-b^2\right)+2iab=-\frac{1}{2}-i\frac{\sqrt{3}}{2}}

  • Complex numbers can be equal only if their real and imaginary parts are equal. Rewrite as system of equations :

\to\begin{bmatrix} \sf{a^2-b^2=-\dfrac{1}{2}}\\\\ \sf{2ab=-\dfrac{\sqrt{3}}{2}}\end{bmatrix}

  • On Solving it further, We get

\to\begin{pmatrix}\sf{a=-\dfrac{1}{2}},\:&\sf{b=\dfrac{\sqrt{3}}{2}}\\\\ \sf{a=\dfrac{1}{2}},\:&\sf{b=-\dfrac{\sqrt{3}}{2}}\end{pmatrix}

  • Substitute back x = a + bi

\boxed{\to\sf{\displaystyle x=-\frac{1}{2}+\frac{\sqrt{3}}{2}i,\:x=\frac{1}{2}-\frac{\sqrt{3}}{2}i}}

\rule{315}{1}

The Final Solutions Are,

\boxed{\to\sf{\displaystyle x=\frac{1}{2}+\frac{\sqrt{3}}{2}i,\:x=-\frac{1}{2}-\frac{\sqrt{3}}{2}i,\:x=-\frac{1}{2}+\frac{\sqrt{3}}{2}i,\:x=\frac{1}{2}-\frac{\sqrt{3}}{2}i}}


Anonymous: Perfect Answer . Keep it up .
thapaavinitika6765: Awwsome Answer !! :) ..
RockingStarPratheek: Thankyou Prince Bro ♡
RockingStarPratheek: Thanks @thapaavinitika6765
Anonymous: Great answer & Great explaination...
Anonymous: Lots of effort leads to Great Answer :revealed:
RockingStarPratheek: Thanks @BrainlyBlooms :P
RockingStarPratheek: Thanks @BeBrainliest :P
Glorious31: Awesome answer
RockingStarPratheek: Thankies Sister ❤️ ❤️ ❤️ ❤️ ❤️
Similar questions