Math, asked by itzbeyonder, 5 months ago

QUESTION MATHS Only brainly stars MODERATORS and brainly teacher will answer ​

Attachments:

Answers

Answered by Anonymous
36

Question :

Prove that \sf{2sin^{2}\dfrac{3\pi}{4} + 2cos^{2}\dfrac{\pi}{4} + 2sec^{2}\dfrac{\pi}{3} = 10}

To find :

  • To Prove that LHS is equal to the RHS of the equation.

\sf{2sin^{2}\dfrac{3\pi}{4} + 2cos^{2}\dfrac{\pi}{4} + 2sec^{2}\dfrac{\pi}{3} = 10}

Knowledge required :

  • The value of \sf{\pi = 180^{\circ}}

  • \sf{sin(\alpha + \beta) = sin\alpha cos\beta + cos\alpha sin\beta}

  • sin90° = 1
  • cos90° = 0
  • sin45° = cos45° = 1/√2
  • sec60° = 2

Solution :

From the given equation, we get that :

  • LHS = \sf{2sin^{2}\dfrac{3\pi}{4} + 2cos^{2}\dfrac{\pi}{4} + 2sec^{2}\dfrac{\pi}{3}}

  • RHS = \sf{10}

Let's solve the LHS of the equation,

:\implies \sf{2sin^{2}\dfrac{3\pi}{4} + 2cos^{2}\dfrac{\pi}{4} + 2sec^{2}\dfrac{\pi}{3}} \\ \\

Putting \sf{\pi = 180^{\circ}}, we get :

:\implies \sf{2sin^{2}\bigg[\dfrac{3(180^{\circ})}{4}\bigg] + 2cos^{2}\bigg[\dfrac{(180^{\circ})}{4}\bigg] + 2sec^{2}\bigg[\dfrac{(180^{\circ})}{3}\bigg]} \\ \\ :\implies \sf{2sin^{2}\bigg[\dfrac{(540^{\circ})}{4}\bigg] + 2cos^{2}\bigg[\dfrac{(180^{\circ})}{4}\bigg] + 2sec^{2}\bigg[\dfrac{(180^{\circ})}{3}\bigg]} \\ \\ :\implies \sf{2sin^{2}(135^{\circ}) + 2cos^{2}(45^{\circ}) + 2sec^{2}(60^{\circ})} \\ \\

By taking 2 common in the equation, we get :

:\implies \sf{2[sin^{2}(135^{\circ}) + cos^{2}(45^{\circ}) + sec^{2}(60^{\circ})]} \\ \\

We know that \sf{sin^{2}(135^{\circ})} can be written as \sf{sin(135^{\circ})sin(135^{\circ})}, so by substituting it in the equation, we get :

:\implies \sf{2[sin(135^{\circ})sin(135^{\circ}) + cos^{2}(45^{\circ}) + sec^{2}(60^{\circ})]} \\ \\ :\implies \sf{2[sin(90^{\circ} + 45^{\circ})sin(90^{\circ} + 45^{\circ}) + cos^{2}(45^{\circ}) + sec^{2}(60^{\circ})]}\:\:\:\:[\because \sf{sin135^{\circ} = sin(90^{\circ} + 45^{\circ})} \\ \\

To find the value sin(90° + 45°) :

 :\implies \sf{sin(90^{\circ} + 45^{\circ}) = sin(90^{\circ})cos(45^{\circ}) + cos(90^{\circ})sin(45^{\circ})} \\ \\ :\implies \sf{sin(90^{\circ} + 45^{\circ}) = (1)\bigg(\dfrac{1}{\sqrt{2}}\bigg) + (0\bigg(\dfrac{1}{\sqrt{2}}\bigg)} \\ \\ :\implies \sf{sin(90^{\circ} + 45^{\circ}) = \dfrac{1}{\sqrt{2}}} \\ \\ \boxed{\therefore \sf{sin(90^{\circ} + 45^{\circ}) = \dfrac{1}{\sqrt{2}}}} \\ \\

Hence the value of \sf{sin(90^{\circ} + 45^{\circ})} is \sf{\dfrac{1}{\sqrt{2}}}

Now substituting the values of \sf{sin(90^{\circ} + 45^{\circ})}, we get :

:\implies \sf{2\bigg[\dfrac{1}{\sqrt{2}} \times \dfrac{1}{\sqrt{2}} + \dfrac{1}{(\sqrt{2})^{2}} + (2)^{2}\bigg]} \\ \\ :\implies \sf{2\bigg[\dfrac{1}{(\sqrt{2})^{2}} + \dfrac{1}{(\sqrt{2})^{2}} + (2)^{2}\bigg]} \\ \\ :\implies \sf{2\bigg(\dfrac{1}{2} + \dfrac{1}{2} + 4\bigg)} \\ \\ :\implies \sf{2\bigg(\dfrac{1 + 1 + 8}{2}\bigg)} \\ \\ :\implies \sf{2\bigg(\dfrac{10}{2}\bigg)} \\ \\ :\implies \sf{\not{2}\bigg(\dfrac{10}{\not{2}}\bigg)} \\ \\ :\implies \sf{10} \\ \\ \boxed{\therefore \sf{2sin^{2}\dfrac{3\pi}{4} + 2cos^{2}\dfrac{\pi}{4} + 2sec^{2}\dfrac{\pi}{3} = 10}}

Now putting the LHS and RHS together, we get :

:\implies \sf{LHS = RHS} \\ \\ :\implies \sf{10 = 10} \\ \\

Thus,

\sf{2sin^{2}\dfrac{3\pi}{4} + 2cos^{2}\dfrac{\pi}{4} + 2sec^{2}\dfrac{\pi}{3} = 10}

Proved !!


pulakmath007: Awesome
Answered by tarracharan
12

To prove:

\sf{2\sin² \dfrac{3\pi}{4}+ 2\cos² \dfrac{\pi}{4}+2\sec² \dfrac{\pi}{3} = 10}

Proof:

\sf{➪\:LHS = 2\sin² \dfrac{3\pi}{4}+ 2\cos² \dfrac{\pi}{4}+2\sec² \dfrac{\pi}{3}}

\sf{➪\:LHS = 2\sin² \dfrac{3(180°)}{4}+ 2\cos² \dfrac{(180°)}{4}+2\sec² \dfrac{(180°)}{3}}

\sf{➪\:LHS = 2\sin² 135° + 2\cos²45°+2\sec² 60°}

\sf{➪\:LHS = 2\sin²(180° -45°)+ 2\cos²45°+2\sec² 60°}

\sf{➪\:LHS = 2\sin² 45° + 2\cos²45°+2\sec²60°}

\sf{➪\:LHS = 2\bigg(\dfrac{1}{\sqrt{2}}\bigg)^{2} + 2\bigg(\dfrac{1}{\sqrt{2}}\bigg)^{2}+2(2)²}

\sf{➪\:LHS = 1 + 1 +8}

\sf{➪\:LHS = 10\:➪} \bold{\red{LHS = RHS}}

\large{\bold{★\:Hence\:proved}}

Table to remember:

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm Not \: De fined \\ \\ \rm cosec A & \rm Not \: De fined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: De fined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered}


pulakmath007: Nice
Similar questions