Computer Science, asked by Anonymous, 1 year ago

Question No. 1 :

Convert the following decimal numbers into binary numbers.

a) 17.35

b) 16.42

c) 15.25

[ Do not spam. Very urgent. Solve in steps. Thank you. ]


mummasdollmuski: ....

Answers

Answered by siddhartharao77
12
(1)

Given Decimal Equivalent = 17.35.

Calculate the left-hand side part:

2| 17

2 | 8 - 1

2|  4 - 0

2|  2 - 0

2|  1  - 0


= > (10001)


Calculate the right-hand part:

= > 0.35 * 2 = 0.7   -------------------- 0 

= > 0.7 * 2 = 1.4     ---------------------- 1

= > 0.4 * 2 = 0.8    ---------------------- 0

= > 0.8 * 2 = 1.6     ---------------------  1

= > 0.6 * 2 = 1.2     ---------------------  1

= > 0.2 * 2 = 0.4    --------------------- 0

= > 0.4 * 2 = 0.8    --------------------- 0 

= > 0.8 * 2 = 1.6     --------------------- 1

= > 0.6 * 2 = 1.2    ---------------------  1

= > 0.2 * 2 = 0.4   ---------------------  0

= > 0.4 * 2 = 0.8   ---------------------  0


As the fractional part is repeating. So, We shall Stop here.


Therefore binary equivalent = (10001. 0101100).




(2) 16.42


2| 16

2| 8 - 0

2| 4 - 0

2| 2 - 0

2| 1 - 0 


= > (10000).



2nd part:

= > 0.42 * 2 = 0.84  --------- 0 

= > 0.84 * 2 = 1.68    --------- 1

= > 0.68 * 2 = 1.36    --------- 1

= > 0.36 * 2 = 0.72   --------- 0

= > 0.72 * 2 = 1.44     --------- 1

= > 0.44 * 2 = 0.88    --------- 0

= > 0.88 * 2 = 1.76      --------- 1

= > 0.76 * 2 = 1.52      ---------- 1

= > 0.52 * 2 = 1.04      ---------- 1

= > 0.04 * 2 = 0.08     ----------- 0

= > 0.08 * 2 = 0.16      ----------- 0

= > 0.16 * 2 =   0.32    ----------- 0

= > 0.32 * 2 = 0.64     ----------- 0

= > 0.64 * 2 = 1.28     ------------ 1

= > 0.28 * 2 = 0.54    ------------ 0 

= > 0.54 * 2 = 1.08     ------------ 1

= > 0.08 * 2 = 0.16     ------------ 0

= > 0.16 * 2 = 0.32     ------------ 0


As u can see the fractional part is repeating. So we can stop this.


Therefore the binary equivalent = (10000.011010111000010100).




(3) 15.25

1st part:

2| 15

2| 7 - 1

2| 3 - 1

2| 1 - 1


= > (1111).


2nd part:

= > 0.25 * 2 = 0.50    ------------------ 0

= > 0.50 * 2 = 1.00     -------------------- 1



Therefore the binary equivalent = (1111.01).




Hope this helps!

siddhartharao77: welcome!
Anonymous: great Bhaiya owsm ✌☺
siddhartharao77: Actually, if the same fractional part is repeating again again, we need to stop it after 5 to 6 digits.. I have continued 0.8 thrice, Its not mandatory..ur wish..U can stop it at the 2nd time also..Because we know that it will be continuing.
siddhartharao77: Welcome bro!
Similar questions