Math, asked by gekta7624, 1 year ago

Question no. 17
Plz help me fast because i have my paper after one day

Attachments:

Answers

Answered by Anonymous
0

Take sin²θ+ cos²θ = 1

2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)+1

= 2{(sin²θ)³+(cos²θ)³}-3{(sin²θ)²+(cos²θ)²}+1

=2{(sin²θ+cos²θ)³-3sin²θcos²θ(sin²θ+cos²θ)}-3{(sin²θ+cos²θ)²-2sin²θcos²θ}+1

=2(1-3sin²θcos²θ)-3(1-2sin²θcos²θ)+1

=2-6sin²θcos²θ-3+6sin²θcos²θ+1

=-1+1

=0

Answered by aquialaska
0

Answer:

To Show: 2(sin^6\,\theta+cos^6\,\theta)-3(sin^4\,\theta+cos^4\,\theta)+1=0

We use the following identities,

sin^2\,\theta+cos^2\,\theta=1

a^3+b^3=(a+b)^3-3ab(a+b)

a^2+b^2=(a+b)^2-2ab

Consider,

2(sin^6\,\theta+cos^6\,\theta)-3(sin^4\,\theta+cos^4\,\theta)+1

\implies2((sin^2\,\theta)^3+(cos^2\,\theta)^3)-3((sin^2\,\theta)^2+(cos^2\,\theta)^2)+1

\implies2((sin^2\,\theta+cos^2\,\theta)^3-3sin^2\,\theta\:cos^2\,\theta(sin^2\,\theta+cos^2\,\theta))-3((sin^2\,\theta+cos^2\,\theta)^2-2\:sin^2\,\theta\:cos^2\,\theta)+1

\implies2((1)^3-3sin^2\,\theta\:cos^2\,\theta(1))-3((1)^2-2\:sin^2\,\theta\:cos^2\,\theta)+1

\implies2-6sin^2\,\theta\:cos^2\,\theta-3+6\:sin^2\,\theta\:cos^2\,\theta+1

\implies2-3+1

\implies0

Hence Proved

Similar questions